Hydrogen Purification and Recycling for an Integrated Oxygen Recovery System Architecture

Morgan B. Abney, Zachary Greenwood, Mononita Nur, and Terry Wall
NASA Marshall Space Flight Center, Huntsville, AL

Richard R. Wheeler, Jr.
Umpqua Research Company, Myrtle Creek, OR

Joshua Preston and Trent Molter
Sustainable Innovations, LLC, East Hartford, CT

46rd International Conference on Environmental Systems
Vienna, Austria
July 10-14, 2016
Overview

• Background
• Hardware
• Test Setup
• Results
• System Architectural Options
• Conclusion
• Acknowledgements
State-of-the-Art

• Sabatier Reactor
 – $\text{CO}_2 + 4\text{H}_2 \rightarrow 2\text{H}_2\text{O} + \text{CH}_4$
 – Water product electrolyzed for oxygen
 – Methane product vented resulting in loss of hydrogen reactant
 – Theoretical recovery of $\sim 54\%$ of O_2 recovered from metabolic CO_2
Sabatier Plus Post-Processing

• ~91% O₂ recovery from CO₂ possible
PPA Technology Description

- Developed by UMPQUA Research Co.
- Methane converted to hydrogen and acetylene by partial pyrolysis in microwave generated plasma
- Targeted PPA Reaction:
 \[2\text{CH}_4 \leftrightarrow 3\text{H}_2 + \text{C}_2\text{H}_2\]
- Other reactions:
 - CH\(_4\) Conversion to Ethane
 \[2\text{CH}_4 \leftrightarrow \text{H}_2 + \text{C}_2\text{H}_6\]
 - CH\(_4\) Conversion to Ethylene
 \[2\text{CH}_4 \leftrightarrow 2\text{H}_2 + \text{C}_2\text{H}_4\]
 - CH\(_4\) Conversion to Solid C
 \[\text{CH}_4 \leftrightarrow 2\text{H}_2 + \text{C}(s)\]
 - CO Production
 \[\text{C}(s) + \text{H}_2\text{O} \leftrightarrow \text{CO} + \text{H}_2\]
 - CO Production
 \[\text{CH}_4 + \text{H}_2\text{O} \leftrightarrow \text{CO} + 3\text{H}_2\]
Metal Hydride Hardware

- Hydrogen Components, Inc. Metal Hydride Canister
- LaNi$_{4.6}$Sn$_{0.4}$ metal hydride
- Designed for hydrogen storage
Electrochemical Hardware

• Electrochemical hydrogen separation
 – H_2 electro-oxidized to protons and electrons
 – Protons are electro-reduced, recombined with electrons, in another chamber producing purified H_2

• Basic technology was well developed but not compatible with CO
 – CO would preferentially adsorb on catalytic electrodes and interfere with H_2 oxidation

• Sustainable Innovations developed electrolyte materials capable of operating above 150°C CO thermal desorption temperature
 – “Basic” and “Advanced” cell stacks delivered to MSFC
Test Configurations

• Stand alone
 – Metal hydride to verify safety
 • Literature indicated other metal hydrides had potential to cause violent acetylene decomposition or metal-carbide formation
 – Tested with gas mixture containing 7% C₂H₂, 1% CH₄, and 92% H₂
 – Tested in Marshall Space Flight Center’s Component Development Area, usually used for rocket engine component testing
Test Configurations

- **PPA + H$_2$ Purification**
 - Cell stacks integrated with 2nd Gen. PPA
 - PPA operated with ultra-high purity H$_2$ and CH$_4$ bottles
 - 1 Crew Member processing rate
 - 4:1 ratio of H$_2$:CH$_4$
 - 52 torr
 - 550 W microwave power

- PPA products contained H$_2$, C$_2$H$_2$, unreacted CH$_4$, C$_2$H$_4$, and C$_2$H$_6$
- No CO
- 100 standard milliliters per minute (SmLPM) to cell stack
- Evaluated H$_2$ product and process effluent
Test Configurations

- **Sabatier Development Unit (SDU) + PPA + H₂ Purification**
 - Precision Combustion, Inc. SDU integrated upstream of PPA
 - SDU operated to produce 350 SmLPM CH₄ with no unreacted CO₂
 - Methane product containing 80 mol% hydrogen
 - Water vapor content dew point of 31°C
- PPA operated identically to PPA + H₂ testing
- PPA products contained all previously indicated components and CO and H₂O

![Diagram showing the flow of gases through SDU and PPA](image)

- **Electrochemical Cell Stack**
 - Inputs: H₂, C₂H₂, CH₄, C₂H₄, C₂H₆, CO, H₂O
 - Outputs: Anode Out, H₂
Metal Hydride Performance

• No measurable pressure or temperature difference between pure H₂ runs and acetylene mixed gas runs
• No safety risk under expected operating conditions
PPA effluent composition as a function of configuration
H₂ separation performance comparison between Basic and Advanced cell stacks

- Varied gas feed from PPA, stack temperature, inlet composition, and applied voltage
 - Conditions for each data point were identical
- All recovered H₂ pure within measurable limits of μGC
Hydrogenation

- Expected similar gas mix (minus H_2) leaving anode as entering
- High levels of C_2H_4 and C_2H_6 were observed with minimal or no C_2H_2
- Overall chemical equations:
 - CH_4 Conversion to Ethane: $2CH_4 \leftrightarrow H_2 + C_2H_6$
 - CH_4 Conversion to Ethylene: $2CH_4 \leftrightarrow 2H_2 + C_2H_4$
- Ethane Formation from CH_4 with free radical intermediates:
 - $CH_4 + CH_4 \leftrightarrow CH_3^* + CH_3^* + H^* + H^* \leftrightarrow C_2H_6 + H_2$
 - CH_4 forms CH_3^* free radicals which then recombine to form C_2H_6
 - C_2H_6 is converted to C_2H_4 and C_2H_4 is converted to C_2H_2
 - Reverse reactions also occur providing a mechanism for C_2H_2 hydrogenation to the other hydrocarbons
Effect of temperature on C_2H_2 hydrogenation, Advanced Cell Stack
Acetylene conversion to methane in Advanced cell stack as a function of voltage and anode feed rate.
Acetylene conversion to ethylene in Advanced cell stack as a function of voltage and anode feed rate.
Acetylene conversion to ethane in Advanced cell stack as a function of voltage and anode feed rate.
Effect of water vapor and CO on hydrogenation of C₂H₂.
SI Cell Stack Architecture

- CO₂ from crew
- H₂O
- O₂ to crew

CRA

CH₄ + H₂

Flow Meter

PPA

Flow Controller

Accumulator Tank

Flow Controller

H₂

C₂H₂ + CH₄ + H₂O

to space

H₂ + C₂H₂ + H₂O + CH₄...

H₂

Electrochemical Cell Stack

CRA PPA

OGA

Carbon Capture
Sorbent Architecture

CO₂ from crew → CRA → CH₄+H₂ → Flow Meter → PPA → Flow Controller → Accumulator Tank → Carbon Capture → Compressor → Sorbent to space

H₂O → Flow Meter → OGA → O₂ to crew

H₂+ residual CH₄ → Flow Meter → PPA
Metal Hydride Architecture

CRA

CO₂ from crew

CH₄ + H₂

Flow Meter

PPA

Flow Controller

Accumulator Tank

Carbon Capture

H₂ + C₂H₂ + H₂O + CH₄...

Flow Meter

H₂

OGA

H₂O

O₂ to crew

C₂H₂ + CH₄ to space

Metal Hydride

Space Vacuum
Conclusion

• Effective acetylene separation technology is essential for Sabatier + PPA architecture

• Future work:
 – Reduce acetylene hydrogenation in cell stacks
 – Test UMPQUA sorbent based hydrogen separation system
 – Test metal hydride
Acknowledgements

• Kenny Bodkin, Tom Williams, and Jeff Richardson for technical and software support
• Human Exploration and Operations Mission Directorate’s Advanced Exploration Systems Program’s Life Support Systems Project
• ...Questions?