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As notional life support system (LSS) architectures are developed and evaluated, myriad 

options must be considered pertaining to process technologies, components, and equipment 

assemblies. Each option must be evaluated relative to its impact on key functional interfaces 

within the LSS architecture. A leading notional architecture has been developed to guide the 

path toward realizing future crewed space exploration goals. This architecture includes at-

mosphere revitalization, water recovery and management, and environmental monitoring 

subsystems. Guiding requirements for developing this architecture are summarized and im-

portant interfaces within the architecture are discussed. The role of environmental monitor-

ing within the architecture is described. 

Nomenclature 

AR = atmosphere revitalization 

C&DH = command and data handling 

EM = environmental monitoring 

EVA = extravehicular activity 

FOM = figure of merit 

ISS = International Space Station 

LSS = life support system 

NASA = National Aeronautics and Space Administration 

NTRS = NASA Technical Reports Server 

ORU = on-orbit replaceable unit 

SMAC = spacecraft maximum allowable concentration 

SWEG = spacecraft water exposure guidelines 

VDC = volts direct current 

WMS = waste management system 

WRM = water recovery and management 

C = Celsius 

m = meter 

kg = kilogram 

kPa = kilopascal 

kW = kilowatt 

psia = pounds per square inch absolute 
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I. Introduction 

EVELOPING and studying mission architectures that implement the United States’ National Space Policy to-

ward a capability-driven framework that extends the horizon of space exploration beyond the moon toward 

Mars requires unique, enabling technological capabilities.1-4 Among these capabilities is a regenerative, closed-loop 

life support system (LSS) that can support a crew of four, with the capability to grow to six, for missions lasting 500 

to 1000 days and include deep space transit periods ranging between 420 days and 620 days.5-7 Consisting of atmos-

phere revitalization (AR), water recovery and management (WRM), and environmental monitoring (EM) subsys-

tems as depicted by Fig. 1, the notional LSS architecture under development to support future exploration missions 

is building upon the core process technologies and significant in-flight operational record of the LSS used aboard the 

International Space Station (ISS).8-10 Ongoing technological development seeks to address functional needs and 

technical gaps that exist between the ISS and future exploration missions as well as serve to accelerate Phase A in a 

future exploration program life cycle.11-15 

Taking advantage of the ISS as a laboratory that provides the unique conditions of a long duration, sealed living 

environment provides a rare resource for future LSS development. The environment aboard the ISS allows for LSS 

equipment interactions with that environment to be observed, studied, understood, and factored into the next genera-

tion system while operational strategies suitable for exploration missions can be tested. Observations and lessons 

learned from over three decades of design, development, testing, in-flight operations, refinement, and international 

collaboration that has culminated in the contemporary LSS aboard the ISS are invaluable for pre-Phase A develop-

mental efforts. As the exploration LSS developmental efforts make progress toward Phase A development, these 

insights will prove invaluable to expediting the exploration mission program’s life cycle.16 

Each functional area depicted in Fig. 1 represents a top level trade space for technological development. Lower 

level trade spaces for each developmental area must occur within a framework of guiding requirements. The tech-

nical solutions must also seamlessly address functional interfaces. The following discussion summarizes guidance 

relating to functional requirements and interfaces within the notional architecture. 

 

II. Guiding Requirements for an Exploration Life Support System 

Guiding functional requirements are essential for developing a notional LSS architecture and selecting suitable 

improvements in core process technologies relative to the ISS as the starting basis. At the present stage in the devel-

opmental life cycle, the guiding requirements that describe the basic mission, define general performance objectives, 

and provide design insight are derived from many source documents. Ultimately these guiding requirements will 

form the basis for future exploration program system requirements. The following describes the contribution of var-

ious documents to the exploration LSS guiding requirements. 

D 

 

Figure 1. A life support system functional architecture for exploration missions. 
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A. Mission Definition Guidance 

Information regarding the exploration mission duration and crew size is useful for selecting core process tech-

nologies and conducting early component sizing evaluations. The Mars Design Reference Mission serves as the ba-

sis for this information. The crew of four on a mission lasting at least 500 days and up to 1000 days is the foundation 

for exploration LSS development and part of the capability-driven framework for exploration. As well, this docu-

mentation provides guidance on the deep space habitat pressurized volume of ~280 m3 which is to provide ~24 m3 

habitable volume per crewmember.17 

B. Performance Objective Guidance 

With the guidance on the crew size and mission duration, more details on metabolic loads and demands are 

found in the National Aeronautics and Space Administration’s (NASA) technical standards and handbooks. The 

NASA Space Flight Human System Standard and the Human Integration Design Handbook are excellent sources for 

guiding the LSS design point for metabolic loads and demands.18, 19 The NASA Space Flight Human System Stand-

ard references two documents that provide details on specific cabin atmospheric quality and potable water quality 

provide functional performance goals. These two documents, JSC 20584 and JSC 63414, provide details on the 

spacecraft maximum allowable concentrations (SMAC) for airborne trace contaminants and spacecraft water expo-

sure guidelines (SWEG), respectively. 20, 21 Recent developments pertaining to the need to control the carbon dioxide 

partial pressure to levels well below the published SMAC are considered as a functional goal.22 The guidance on 

cabin atmospheric pressure provided by the NASA technical standards and handbooks has been supplemented by 

recommendations by the NASA Exploration Atmospheres Working Group which recommended 101.5 kPa (14.7 

psia) and 21% oxygen partial pressure for exploration mission design.23 An update in 2013 retained the 101.5 kPa 

and 21% oxygen partial pressure design point for deep space exploration missions such as Mars transit but included 

the allowance for mission architectures with high-frequency extravehicular activity (EVA) demands to have the ca-

pability to operate at 56.5 kPa (8.2 psia) and 34% oxygen partial pressure. Exploration LSS developmental efforts 

have been working within the 101.5 kPa and 21% oxygen partial pressure guidance. 

C. Supplemental Guidance 

The mission definition guidance and performance objective requirements are supplemented by insight provided 

by subject matter expertise, flight program observations and lessons learned, and how programs such as ISS and 

Constellation have implemented these requirements in their specific program specification and requirement docu-

ments. Excellent supplemental guidance can be found in Guidelines and Capabilities for Designing Human Missions 

and the Constellation Human-Systems Integration Requirements document.24, 25 NASA technical publications avail-

able via the NASA Technical Reports Server (NTRS) are also excellent supplemental sources. Observations and 

lessons learned from the ISS program are documented in numerous conference publications that describe LSS status 

and assembly level performance. The bibliography contains a listing of helpful supplementary documentation suita-

ble for top-level LSS design development. 

III. System Functional and Physical Interface Overview 

The interfaces that exist between a crewed spacecraft and the LSS are numerous and can be quite complex. Fig-

ure 2 provides an extensive interface diagram for the notional LSS architecture. Significant interfaces between the 

LSS and the crew and the vehicle’s structural, command and data handling (C&DH), electrical power, thermal con-

trol, logistics management, and EVA systems are evident on examining Fig. 2. Specialty engineering considerations 

can drive requirements for acoustic noise, materials and processes, and maintainability among other specialty areas. 

Identifying all of the interfaces an LSS may have requires iteration and a high degree of communication across mul-

tiple technical disciplines. These iterative communications to define requirements is challenging and time consum-

ing. Figure 2 represents a preliminary effort to evaluate primary interfaces. 

Simplifying the interface diagram to consider the LSS alone is helpful for bounding the challenge. Figure 3 

shows a simplified interface diagram for the LSS and its primary subsystems. In Fig. 3 the primary resources such as 

atmospheric gases and water are considered along with power distribution, thermal control, and C&DH. 

Between the three LSS subsystems, the most significant interface consists of transferring water from the WRM 

subsystem to the AR subsystem to generate oxygen as illustrated by both Figs. 1 and 3. This water transfer repre-

sents a significant water demand for an exploration mission. Therefore, it is desirable to reduce the AR subsystem’s 

net water demand by employing carbon dioxide reduction. Depending on the carbon dioxide reduction technique 

selected, a fraction of the AR subsystem’s water demand ranging between 50% and 90% can be returned to the 

WRM subsystem.  Therefore, selecting a carbon dioxide reduction  technique that can minimize  the water demands 
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Figure 3. A simplified interface diagram for the LSS architecture. 

 

for the exploration destination is an important consideration for the LSS architecture. The potable water quality 

measured by the EM subsystem is important to reliable oxygen generation over the mission’s duration; therefore, 

specific feed water quality requirements must be determined to provide the necessary reliability. Product water qual-

ity produced by carbon dioxide reduction processes must also be considered for its contaminant load on the WRM 

subsystem’s water processing equipment. The following presents interfaces within each LSS subsystem. 

A. Atmosphere Revitalization Subsystem Interfaces 

The AR subsystem purifies the cabin atmosphere, maintains its composition within the parameters discussed in 

Section II, and recovers oxygen from carbon dioxide. As shown by Fig. 4, the AR subsystem consists of eight pri-

mary functional areas. These func-

tional areas are the following: 

1) Process gas moisture man-

agement. 

2) Carbon dioxide removal. 

3) Carbon dioxide conditioning 

and management. 

4) Carbon dioxide reduction. 

5) Carbon dioxide reduction 

product processing and 

management. 

6) Oxygen generation and sup-

ply management. 

7) Trace contaminant control. 

8) Particulate matter and bio-

contaminant control. 

The AR subsystem receives 

process air from the cabin ventila-

tion system, purifies it, and returns 

 

Figure 2. A detailed interface diagram showing interfaces between the LSS and vehicle systems. Interfaces 

flow clockwise around the diagonal. Inputs are above the diagonal and outputs are below the diagonal. 
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it to the cabin. The purification processes remove particulate matter and biocontaminants, trace chemical contami-

nants, and carbon dioxide. The process air fed to the AR subsystem may need to be conditioned for temperature and 

moisture content to allow for the moisture management and carbon dioxide removal equipment function properly 

and optimize component sizes. It may also be necessary for the process air to pass through trace contaminant control 

and particulate matter control equipment before being delivered to the core atmosphere purification processing 

equipment which manages moisture and removes carbon dioxide. The AR subsystem also receives water from the 

WRM subsystem to produce oxygen. In return, the AR subsystem returns moisture removed from the process air 

stream to the cabin as well as returns water produced by the carbon dioxide reduction process to the WRM subsys-

tem via the cabin humidity control equipment. 

Figure 4 shows that the carbon dioxide reduction process is central to the overall AR subsystem architecture and 

has two internal interfaces. One with carbon dioxide removal and one with oxygen generation. These interfaces sup-

ply the carbon dioxide and hydrogen feed gases and require process control coordination. To ensure proper opera-

tion over the mission duration, the CO2 and H2 fed to the carbon dioxide reduction process must meet specified 

purities and moisture loads. An interface specification for feed gas purities and moisture load must be developed to 

facilitate AR subsystem integration. The coordinated operational protocols between carbon dioxide removal, carbon 

dioxide reduction, and oxygen generation process equipment must also be defined as part of the assembly-level in-

terface requirements. 

 

B. Water Recovery and Management Subsystem Interfaces 

The WRM subsystem’s purpose is to recycle wastewater to provide water for crew consumption, crew hygiene, 

and to support other water consuming systems such as electrolysis-based oxygen generators, evaporative heat ex-

change processes, and EVA operations. As shown by Fig. 5 the components comprising the WRM subsystem are 

grouped into four assemblies managing the main process fluids of the system. These assemblies are the following: 

1) Water recovery from urine. 

2) Water recovery from process byproducts such as urine processing brine. 

3) Water purification to potable standards. 

4) Potable water supply management. 

 

Figure 4. A simplified interface diagram for the AR subsystem. 
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In order to achieve the first function, it is necessary to treat urine so that it remains stable throughout the recov-

ery processes. Developing a suitable chemical is the subject of development for the notional WRM subsystem. The 

chemical is introduced at the point of urine collection in the Waste Management System (WMS) shown by Fig. 1. 

This defines an interface between the WRM subsystem and the WMS. Water is recovered from the pretreated urine 

by a primary urine processor. The second function is achieved via a secondary processor to recover water from the 

concentrated brine byproduct produced by the primary processor is necessary to improve the total water recovery for 

exploration missions. The WRM subsystem also receives water from cabin humidity control and AR subsystem car-

bon dioxide reduction processes which is processed along with other waste water streams by the third component—

the water purification assembly. Defining the acceptable contaminant load in humidity condensate, the carbon diox-

ide reduction-produced water, and other waste water streams is necessary for controlling these interfaces as exces-

sive loading can lead to undesirable process economics for the WRM subsystem. The third assembly purifies water 

recovered from urine, urine brine, humidity condensate, and AR subsystem processes to produce a potable water 

product. A biocidal chemical is added to the potable water product to inhibit microbial growth in downstream com-

ponents and storage tanks. While chemical treatment is effective, disadvantages such as long-term efficacy, human 

toxicity, and safety must be addressed for future exploration needs. Similar considerations must also be given to 

stabilizing urine for treatment. 

Each of the WRM subsystem’s core functions incorporates processes that may generate gaseous byproducts. 

Contaminants contained in these byproduct gases typically fall within SMAC limits and are candidate for venting to 

the habitable cabin volume. Attention must be given, however, to evaluating the impact this load has on the AR sub-

system to determine whether treatment at the contaminant generation source is more economical compared to vent-

ing byproduct gases directly into the cabin. 

 

C. Environmental Monitoring Subsystem Interfaces 

The EM subsystem addresses principle environmental health monitoring functions associated with cabin atmos-

pheric quality, water quality, and airborne and surface microbiology.26 Via monitoring, the LSS as well as the medi-

cal and environmental health communities ensure that key risks related to the cabin atmosphere, water quality, and 

microbial contamination. As part of the LSS, the EM subsystem monitors the cabin atmospheric composition, the 

airborne trace chemical contaminant load, combustion products, and potable water quality.27, 28 The EM subsystem 

architecture, therefore, provides specific functions depicted by Fig. 6 that include the following: 

1) Monitor the cabin atmospheric constituent partial pressures including oxygen, nitrogen, carbon dioxide, water 

vapor, hydrogen, and methane. 

2) Monitor the cabin trace chemical contaminant load. 

3) Monitor for combustion products such as carbon monoxide (CO), hydrogen cyanide (HCN), hydrogen chlo-

ride (HCl), and hydrogen fluoride (HF). 

4) Monitor potable water quality. 

5) Monitor airborne and potable water microbial contamination. 

 

Figure 5. A simplified interface diagram for the WRM subsystem. 
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Figure 6 shows these functions require interfaces with the AR and WRM subsystems that allow for sample collec-

tion and return, particularly for water samples. Data transfer from EM components to the AR and WRM subsystems 

may exist as part of an autonomous LSS control approach. For instance, during a crew exercise period when oxygen 

consumption and carbon dioxide production are high, the EM subsystem’s signal may be used to increase oxygen 

production and carbon dioxide removal rates to smooth major constituent partial pressure fluctuations in the cabin. 

Likewise, during sleep periods with low oxygen consumption and carbon dioxide production, the AR subsystem can 

use the EM subsystem data to match the demand. Similarly, as the EM monitors the cabin trace contaminant load, 

the water processing system may be able to anticipate variations in the contamination load in humidity condensate to 

better manage expendable resources. Likewise, monitoring the potable water quality can allow for automated com-

pensation for additional processing to comply with specifications. 

 

IV. Interfaces with Supporting Infrastructure 

Important interfaces for the exploration LSS include electrical power, avionics and software, thermal control, 

and structures. These are important infrastructure support areas for the LSS and all vehicle systems. Resource allo-

cations for each technical area can dictate the LSS capabilities and influence the system’s design. The following 

summarizes aspects of these technical interfaces as they relate to the exploration LSS. 

A. Electrical Power 

The electrical power interface is described by the Mars Design Reference Mission 5.0 to be 120 VDC. This 

power voltage is used aboard the ISS and, therefore, developmental work is being conducted using a 120 VDC 

source with voltage conditioning at the assembly and component levels as needed. The total power available is 22 

kW; however, details regarding the LSS allocation are not yet specified.29 

B. Avionics and Software 

Avionics and software are necessary for the LSS to function properly. Information and insight for the crew and 

mission controllers to monitor the LSS and interfaces for the crew to adjust to mission needs are vital. The avionics 

and software architecture necessary for exploration missions is envisioned to possess standardized capabilities and 

interfaces that can be tailored for specific missions and vehicle platforms within a capability-driven exploration mis-

 

Figure 6. A simplified interface diagram for the EM subsystem. 
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sion framework.30 The software is envisioned to be open source and reconfigurable to take advantage of improve-

ment in the space flight avionics and software technical area.31 The avionics network is envisioned to be based on an 

Ethernet “backbone” to accommodate large data volumes and allow for commercial-off-the-shelf hardware and 

software products to be used.32 The exploration LSS will use the envisioned avionics and software architectures cur-

rently under development, incorporate autonomous mission operations approaches into the software, and conduct 

hardware-software integration at the earliest system development maturity possible. Developing the early software 

architecture is key to future mission success and avoiding excessive complexity.33 

C. Thermal Control 

The LSS consists of components that will produce excess thermal energy. This energy is handled both directly 

and indirectly via different cooling strategies. Direct liquid cooling via heat exchangers and cold plates as well is 

indirect cooling by thermal energy dispersion into the cabin environment are options. Ultimately the excess thermal 

energy is either recovered for re-use in LSS processes or rejected to space via radiators. The methods and specific 

interfaces for thermal control constitute a not yet defined trade space for the LSS equipment architecture and physi-

cal layout. 

D. Structural Interfaces for Maintainability 

An LSS suitable for a journey to Mars and back must enable in-flight maintenance and reduce the need to store 

large quantities of spare parts. In-flight maintenance is necessary because the on-orbit replaceable unit (ORU) logis-

tics and ground-based maintenance depot developed for the ISS is unsuitable for deep space exploration missions. 

The structural interfaces between the LSS and the habitat must not only accommodate launch and transportation 

loads but also must enable the crew to access components and limited life items for routine and unscheduled 

maintenance. An open physical layout that enables in-flight maintainability at an appropriate component level is 

required. By studying component replacement and maintenance aboard the ISS, the exploration LSS architecture can 

gain insight regarding what types of components require the most frequent maintenance. A physical layout and 

equipment packaging design that enables in-flight maintenance can result from this insight. As well, a targeted effort 

to improve component reliability can be developed. Through these efforts, a strategy for an in-flight logistics and 

maintainability model can be developed. An initial step is developing an LSS assembly- and component-level layout 

with attention to structural interfaces that allow easy access to components for repair and replacement. 

E. Considerations for Component Commonality 

Identifying and defining common aspects among interfaces is essential to accommodating LSS equipment com-

ponents and assemblies developed by different equipment suppliers and international partners. This will enable a 

hassle free integration without the need to reworks or modifications to the original subsystem. Electrical power and 

avionics interfaces are two common technical areas discussed above. It was noted previously that the Mars Design 

Reference Mission assumes a 120 VDC electrical power distribution system for a deep space habitat. This is a lega-

cy interface since the ISS U.S. Segment uses a 120 VDC electrical power distribution bus. The avionics interfaces in 

general and data interfaces in particular are more complicated and deserve in depth study. To this end, a team at 

NASA is considering a modular avionics architecture that includes the data interface. The team is currently develop-

ing figures of merit (FOMs) to evaluate different options which include the following: 

1) Affordability—addresses cost in the form of base cost, launch mass, additional development cost, etc. 

2) Maintainability—addresses how simple it is to keep the system healthy, functioning, and up-to-date. 

3) Interoperability—addresses how well the system interfaces with others in a manner that requires little or no 

knowledge of the unique characteristics of those units. 

4) Performance—addresses how well the system does the job that it is intended to do. 

5) Robustness—addresses how well the system mitigates, detects, and recovers from faults. 

6) Scalability—addresses how easily the network of systems can be extended to include new systems. 

7) Security—addresses how well the system prevents unauthorized actions. 

These FOMs offer detail for the broader FOMs for the Mars Design Reference Mission which include safety and 

mission success, effectiveness, and affordability.34 It is anticipated that this type of developmental focus will be ex-

tended to other exploration technology development areas to identify a common set of components, for example 

avionics cards, sensors, valves, pumps and other equipment items that can play key roles in developing the main-

tainability philosophy for the future LSS. Even though the current emphasis is on LSS, no doubt that these studies 

will be extended to other spacecraft systems as well. 
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V. System Resource Allocations 

Early in the mission development cycle the LSS resource allocations for mass, electrical power, volume, thermal 

control, data rates, and many other technical areas are not yet specified. An assessment of a deep space habitat de-

scribes a strategy for a 1000-day mission by six crewmembers that provides 11803 kg for the LSS. Within this allo-

cation the AR subsystem is allocated 1848 kg and the WRM 5971 kg. Under a more aggressive strategy to reduce 

mass, the LSS mass allocation is 9114 kg with the AR subsystem mass of 1651 kg and a WRM mass of 3687 kg. 

The consumables for the LSS are allocated 1373 kg under the primary strategy and 1345 kg under the aggressive 

strategy.35 

VI. Preliminary System Hazards Summary 

A preliminary review of the notional LSS indicates hazards similar to those associated with the ISS LSS. Haz-

ardous accumulation of contaminants, hazardous fluids, combustible gases, high temperatures and pressures, and 

cabin atmospheric leakage paths to space vacuum are evident. 

Among the AR subsystem hazards, addressing combustible gas leakage from oxygen generation and carbon di-

oxide reduction equipment must be addressed and appropriate controls implemented. As well, materials of construc-

tion used in the oxygen generation assembly must be compatible with high purity oxygen as well as high purity 

hydrogen. Components within the trace contaminant control and carbon dioxide assemblies operate at temperatures 

ranging from 200 °C to 400 °C and some carbon dioxide reduction processes operate above 500 °C. Therefore, it is 

necessary to prevent thermal runaway and also prevent crew contact with hot surfaces and process gas streams. 

Hazards within the WRM subsystem are associated with chemicals used for urine stabilization and potable water 

antimicrobial treatment. The low pH required for urine stabilization to prevent precipitation presents a hazard to the 

crew and limits the life of the wetted components. This chemical is also a corrosive acid and some formulations 

have carcinogenic properties. Due to the hazardous nature of urine pretreatment chemical and the pretreated urine 

and, likewise, urine brine, special care must be taken to properly contain this fluid throughout all parts of the pro-

cess, including during maintenance. 

Likewise, the long-term efficacy, human toxicity, and safety precautions necessary for potable water antimicro-

bial treatment must be considered. Iodine poses a health risk at large doses. This is mitigated by removing the iodine 

at the point of use. Work is being done to eliminate this hazard by choosing an antimicrobial chemical that can per-

form its function at levels that are safe to ingest while maintaining good efficacy. 

Finally, inherent to any water system is the hazard posed by the large quantities of water in microgravity. With-

out a significant gravity vector, a water leak could present a suffocation/drowning hazard to the crew. Large quanti-

ties of water can also damage electrical equipment. 

VII. Conclusion 

The general features and guiding functional requirements for a notional LSS that is suited for meeting the chal-

lenges of long duration missions of a capability-driven space exploration framework were presented. The architec-

ture was assessed relative to top-level interfaces at the system and subsystem levels. The interfaces with supporting 

infrastructure were presented. Among the most challenging is the need for an early, open source software architec-

ture that incorporates autonomous mission control features. The LSS physical layout and structural interfaces must 

also enable easy access to components for in-flight maintenance. An early hazard analysis indicates hazards similar 

to those associated with the LSS aboard the ISS. 

Acknowledgements 

This work is conducted by the Life Support Systems Project under the sponsorship of NASA’s Advanced Explo-

ration Systems Program. 

Bibliography 

The following documentation supplements the requirements and guidance found in the NASA Space Flight Hu-

man System Standard, the Human Integration Design Handbook, and the referenced documents. 

Parker, J.F. and West, V.R., Bioastronautics Data Book, NASA SP-3006, 1973. 

Wieland, P.O., Designing for Human Presence in Space, NASA RP-1324, 1994. 

Wieland, P.O., Living Together in Space: The Design and Operation of the Life Support Systems on the International Space 

Station, NASA/TM-1998-206956, Vol. I, January 1998. 

Perry, J.L., Elements of Spacecraft Cabin Air Quality Control Design, NASA/TP-1998-207978, May 1998. 



 

International Conference on Environmental Systems 
 

 

10 

James, J.T., “Airborne Dust in Space Vehicles and Habitats,” SAE 2006-01-2152, SAE 36th International Conference on En-

vironmental Systems, Norfolk, Virginia, 2006. 

James, J.T., “The Headache of Carbon Dioxide Exposures,” SAE 2007-01-3218, SAE 37th International Conference on Envi-

ronmental Systems, Chicago, Illinois, 2007. 

James, J.T., “Air Quality Standards for Space Vehicles and Habitats,” SAE 2008-01-2125, SAE 38th International Conference 

on Environmental Systems, San Francisco, California, 2008. 

McCoy, J.T. and James, J.T., “Water Quality Standards for Space Vehicles and Habitats,” SAE 2008-01-2196, SAE 38th In-

ternational Conference on Environmental Systems, San Francisco, California, 2008. 

James, J.T., “A History of Space Toxicology Mishaps: Lessons Learned and Risk Management,” SAE 2009-01-2591, SAE 

39th International Conference on Environmental Systems, Savannah, Georgia, 2009. 

Perry, J.L., “A Design Basis for Spacecraft Cabin Trace Contaminant Control,” SAE 2009-01-2592, SAE 39th International 

Conference on Environmental Systems, Savannah, Georgia, 2009. 

Perry, J.L., and Kayatin, M.J., Trace Contaminant Control Design Considerations for Enabling Exploration Missions, ICES 

2015-108, 45th International Conference on Environmental Systems, Bellevue, Washington, 2015. 

Life Support Baseline Values and Assumptions Document, NASA/TP-2015-218570, March 2015. 

References 
1National Space Policy of the United States of America, June 28, 2010, p. 11. 
2Voyages—Charting the Course for Sustainable Human Space Exploration, NP-2011-06-395-LaRC, National Aeronautics 

and Space Administration, 2011, p. 2. 
3Human Exploration of Mars Design Reference Architecture 5.0, NASA-SP-2009-566, National Aeronautics and Space Ad-

ministration, July 2009. 
4NASA Strategic Plan 2014, NP-2014-01-964-HQ, National Aeronautics and Space Administration, 2014, pp. 11-13. 
5Human Exploration of Mars Design Reference Architecture 5.0 Addendum, NASA/SP-2009-566-ADD, National Aero-

nautics and Space Administration, July 2009, pp. 152-153. 
6Human Exploration of Mars Design Reference Architecture 5.0, NASA-SP-2009-566, National Aeronautics and Space Ad-

ministration, July 2009, pp. 47-48. 
7Human Exploration of Mars Design Reference Architecture 5.0 Addendum, NASA/SP-2009-566-ADD, National Aero-

nautics and Space Administration, July 2009, p. 65. 
8Howard, D., Perry, J., Sargusingh, M., and Toomarian, N., “Notional Environmental Control and Life Support System Ar-

chitectures for Human Exploration beyond Low-Earth Orbit,” AIAA-2015-4456, AIAA SPACE 2015, Pasadena, California, 2015. 
9Hodgson, E., Converse, D., Duggan, M., and Gentry, G. “Flexible Path Environmental Control and Life Support Technolo-

gy—Possible First Steps to Move Beyond LEO,” AIAA-2012-3443, AIAA 42nd International Conference on Environmental Sys-

tems, San Diego, CA, 2012 
10Hodgson, E., Converse, D., Duggan, M., and Gentry, G. “Flexible Path Environmental Control and Life Support Technolo-

gy—An Updated Look at Next Steps,” AIAA-2013-3409, AIAA 43rd International Conference on Environmental Systems, Vail, 

Colorado, 2013. 
11NASA Technology Roadmaps TA 6: Human Health, Life Support, and Habitation Systems, National Aeronautics and 

Space Administration, 2015, pp. 4-5, 19, 21, 23-28, 51-56. 
12NASA Space Technology Roadmaps and Priorities: Restoring NASA’s Technological Edge and Paving the Way for a New 

Era in Space, National Academy Press, 2012, pp. 61, 182-203. 
13Bagdigian, R., Gatens, R., Metcalf, J., Stephan, r., Broyan, J., Shull, S., and Macatangay, A., “National Aeronautics and 

Space Administration Environmental Control and Life Support Technology Development and Maturation for Exploration,” 

ICES-2014-19, 44th International Conference on Environmental Systems, Tucson, Arizona, 2014. 
14Gatens, R.L., Anderson, M.S., Broyan, J.L., Macatangay, A.V., Shull, S.A., Perry, J.L., Schneider, W.F., and Toomarian, 

N.B., “National Aeronautics and Space Administration Environmental Control and Life Support Technology Development and 

Maturation for Exploration: 2014 to 2015 Overview,” ICES-2015-111, 45th International Conference on Environmental Systems, 

Bellevue, Washington, 2015. 
15Schneider, W., Perry, J., Anderson, M., Broyan, J., Macatangay, A., Shull, S., Gatens, R., and Toomarian, N., “NASA Envi-

ronmental Control and Life Support Technology Development and Maturation for Exploration: 2015 to 2016 Overview,” ICES-

2016-40, 46th International Conference on Environmental Systems, Vienna, Austria, 2016. 
16NASA Space Flight Program and Project Management Requirements, NPR 7120.5E, August 14, 2012, pp. 19-33. 
17Human Exploration of Mars Design Reference Architecture 5.0 Addendum #2, NASA-SP-2009-566-ADD2, National Aer-

onautics and Space Administration, March 2014, pp. 368-369. 
18NASA Space Flight Human System Standard, Vol. 2, NASA-STD-3001, NASA, Washington, DC, January 10, 2011, pp. 

26-45. 
19Human Integration Design Handbook, NASA/SP-2010-3407, January 27, 2010, pp. 314-370. 
20James, J.T., Spacecraft Maximum Allowable Concentrations for Airborne Contaminants, JSC 20584, NASA Johnson Space 

Center, Houston, Texas, November 2008. 
21James, J.T. and McCoy, J.T., Spacecraft Water Exposure Guidelines, JSC 63414, NASA Johnson Space Center, Houston, 

Texas, November 2008. 



 

International Conference on Environmental Systems 
 

 

11 

22James, J., “Surprising Effects of CO2 Exposure on Decision Making,” AIAA-2013-3463, 43rd International Conference on 

Environmental Systems, Vail, Colorado, 2013. 
23Recommendations for Exploration Spacecraft Internal Atmospheres: The Final Report of the NASA Exploration Atmos-

pheres Working Group, NASA/TP-2010-216134, October 2010, p. 16. 
24Allen, C.S., Burnett, R., Charles, J., Cucinotta, F., Fullerton, R., Goodman, J.R., Griffith, A.D., Kosmo, J.J., Perchonok, M., 

Railsback, J., Rajulu, S., Stilwell, D., Thomas, G., Tri, T., Joshi, J., Wheeler, R., Rudisill, M., Wilson, J., Mueller, A., and Sim-

mons, A., Guidelines and Capabilities for Designing Human Missions, NASA/TM-2003-210785, 2003. 
25Constellation Program Human-Systems Integration Requirements, CxP 70024, March 2008. 
26Macatangay, A.V., “An Assessment of Environmental Health Needs,” AIAA 2013-3465, AIAA 43rd International Confer-

ence on Environmental Systems, Vail, Colorado, 2013, pp. 3, 7-10, 12-15. 
27Jan, D.L., “Environmental Monitoring as Part of Life Support for the Crew Habitat for Lunar and Mars Missions,” AIAA 

2010-6092, AIAA 40th International Conference on Environmental Systems, Barcelona, Spain, 2010. 
28Jan, D.L. and Newton, R., “Environmental Monitoring as Part of Life Support: Deep Space Exploration,” AIAA 2012-3433, 

AIAA 42nd International Conference on Environmental Systems, San Diego, California, 2012. 
29Human Exploration of Mars Design Reference Architecture 5.0 Addendum #2, NASA-SP-2009-566-ADD2, March 2014, 

pp. 367-371. 
30Goforth, M.B., Ratliff, J.E., Hames, K.L., Vitalpur, S.V., “Avionics Architectures for Exploration: Building a Better Ap-

proach for Human Spaceflight Avionics,” AIAA 2014-1604, AIAA SpaceOps 2014 Conference, Pasadena, California, 2014, pp. 

1, 15. 
31Krupiarz, C., “The Road to the New Flight Software,” Ask Magazine, Summer, 2013, pp. 33-36. 
32NASA Study on Flight Software Complexity, 2009, p. 2. 
33Goforth, M.B., Ratliff, J.E., Hames, K.L., Vitalpur, S.V., “Avionics Architectures for Exploration: Building a Better Ap-

proach for Human Spaceflight Avionics,” AIAA 2014-1604, AIAA SpaceOps 2014 Conference, Pasadena, California, 2014, pp. 

2. 
34Human Exploration of Mars Design Reference Architecture 5.0, NASA-SP-2009-566, National Aeronautics and Space 

Administration, July 2009, pp. 45-46. 
35Human Exploration of Mars Design Reference Architecture 5.0 Addendum #2, NASA-SP-2009-566-ADD2, March 2014, p. 

369. 


