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Saturn Entry Probe

1Palmer, Prabhu, and Cruden, “Aeroheating Uncertainties in Uranus and Saturn Entries by the Monte Carlo Method”

http://nssdc.gsfc.nasa.gov/planetary/image/saturn.jpg

• The 2013 Decadal Survey identified 

a probe mission to Saturn as a high 

priority. 

• Saturn entry conditions:

- High speed trajectories of ~25-29 

km/s.

- H2-He atmosphere mixture.

• Convective heating accounts for 

most of the total heat flux during 

entry.

• Significant uncertainty in the 

prediction of radiative heating.1



3 of 22

Saturn Entry Experiments

1Cruden and Bogdanoff, “Shock Radiation Tests for Saturn and Uranus Entry Probes”

• Recent shock tube experiments 

of a H2-He mixture have been 

performed in the NASA Ames 

Electric Arc Shock Tube (EAST)1. 

- Spectrometers measured emission 

in the VUV, UV, visible, and near-

IR ranges.

- H and H2 emission measured.

• Observations

- Post-shock region did not 

equilibrium by 5 cm.

- An induction period occurred 

several cm behind shock. 

27.8 km/s, 0.2 Torr, VUV range

- Radiance in the VUV range was observed in the pre-shock region indicating 

diffusion of hydrogen upstream of the shock.



4 of 22

Saturn Entry Experiments

1Cruden and Bogdanoff, “Shock Radiation Tests for Saturn and Uranus Entry Probes”

• Blue and Green lines show two possible Saturn entry trajectories.

• Shock tube experiments were run at each *-point.1

• DSMC simulations of Shot 25 and Shot 17 are performed here.
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Motivation:

• Investigate the influence of non-equilibrium phenomena on Saturn entry 

conditions.

• Identify physical mechanisms that explain the EAST experimental results.

- Direct Simulation Monte Carlo (DSMC) method is required to model non-

continuum features.

• Complete a first attempt of modeling a high temperature H2-He mixture 

with DSMC.

- Develop high temperature parameters and identify areas requiring improvement.
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Direct Simulation Monte Carlo (DSMC)

• Stochastic model of individual 

particles and their physics.

- Each DSMC ‘particle’ represents 

many real particles.

- Can model large non-equilibrium 

regions.

• Probabilistic approach

- Simplified models use cross 

sections and probabilities 

determined from experiments.

• Applicable for rarefied flows

- 𝐾𝑛 =  𝜆 𝐷 > 0.01

- Continuum breaks down.

- Must use Boltzmann equation.
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Hypersonic DSMC

1-D Unsteady Shock Simulation:
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Hypersonic DSMC

Electronic Excitation Model:

• Model scheme follows previous work by Liechty.1

- Post-collision energy transfer is performed with an 

acceptance-rejection procedure following Larsen-Borgnakke.

- Electronic energy and degeneracy parameters for each 

electronic level are required.

• Electronic temperature is currently modeled as the 

electron temperature.

- Free electron kinetic energy is the only component in the 

electronic temperature.

- Equilibrates rapidly with the translational temperature.

- Misrepresents the non-equilibrium in the heavy particle 

electronically excited states.

1Liechty, D. S., and Lewis, M. J., “Extension of the Quantum-kinetic Model to Lunar and Mars Return Physics”
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Hypersonic DSMC

Collision Models:

• Elastic collisions: Variable Hard Sphere (VHS)

• Inelastic collisions: Larsen-Borgnakke

- Rotational relaxation: Parker’s model

- Vibrational relaxation: Millikan-White

• Chemical reactions: Total Collision Energy (TCE)

• Quasi-neutrality: Free electrons travel with ions

• From these models, over 50 input parameters are required for a 7-species

H2-He mixture (H2, H, He, H2
+, H+, He+, e–).

- Many of the DSMC parameters for H2-He mixtures are outdated or unavailable 

in literature.

- New or improved parameters were obtained when possible.
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Elastic Collisions

• Previous general VHS parameters were 

published by Bird1 and Boyd2.

- Collision partner independent.

- Fit to low temperature data.

• Collision integrals provided by Palmer3

were used to obtain high temperature 

VHS parameters.

• Species specific VHS parameters were 

curve fit for neutral-neutral and charge-

neutral collisions.

• Charge-charge collision parameters were 

assumed to be identical to the charge-

neutral parameters.

- Necessary since the range of the VHS 

values is limited. 

- Introduces a small amount of error.
1G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows

2I.D. Boyd, “Monte Carlo Simulation of Nonequilibrium Flow in a Low-power Hydrogen Arcjet”
3Palmer, Prabhu, and Cruden, “Aeroheating Uncertainties in Uranus and Saturn Entries by the Monte Carlo Method”

H2-H2

VHS Parameters:
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Inelastic Collisions

• Vibrational collision number is 

calculated from Millikan-White 

using Palmer’s1 parameters.

• A temperature dependent rotational 

collision number relationship is 

preferred (Parker).

- H2 is complex in rotation.

- Compiled experimental data shows 

conflicting trends.

• Rotational collision number was 

“fit” to the data using a temperature 

independent value.

- For a moderate temperature range 

between 200-1500 K, the fit was 

determined to be Zrot = 174. 

1Palmer, Prabhu, and Cruden, “Aeroheating Uncertainties in Uranus and Saturn Entries by the Monte Carlo Method”

H2 Relaxation Parameters:
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Chemical Reactions

1L. P. Leibowitz and T. J.Kuo, “Ionizational Nonequilibrium Heating During Outer Planetary Entries”

• Forward Arrhenius reaction rates 

(Kf) were obtained from Leibowitz1.

• Reverse reaction rates (Kr) were 

calculated from the equilibrium 

constant (Keq) and fit to an 

Arrhenius form.

- Arrhenius fit is necessary for the 

TCE model.

• Neutral recombination reactions 

were fit to a temperature region 

between 5,000-20,000 K.

- Over-predicts recombination at very 

high temperatures.

- Under-predicts recombination at low 

temperatures.

Recombination Reaction Rates: H + H + H2 → H2 + H2



12 of 221L. P. Leibowitz and T. J.Kuo, “Ionizational Nonequilibrium Heating During Outer Planetary Entries”

Recombination Reaction Rates:

Chemical Reactions

H+ + e– + H → H + H

• Electron capture reaction rates are 

more difficult to curve fit.

- Poor curve fits are due to constraints 

of the TCE model on the possible 

Arrhenius parameters.

• Large errors in the current electron 

capture rates are evident.

- Over-predicts recombination at high 

temperatures.

- Under-predicts recombination at low 

temperatures.

- Leads to noticeable error in the 

equilibrium constant.
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0-D Relaxation Simulation

• 0-Dimensional relaxation is simulated to 

check if equilibrium is obtained.

- Ttr,o = 20,000  K

- Trot,o = Tvib,o = Telec,o = 300 K

- Po = 0.2 Torr

- 89% H2: 11% He (by mole)

• Quick equilibration of 

internal modes.

• Slow chemical equilibration.

• Equilibrium mole fractions 

were reproduced.

How can we compare the DSMC results directly to 
the experimental data?

• Experiments measure radiative emission.

- Must post-process DSMC results with a radiative solver.

• Simulate Shots 25 and 17.

- Compare simulated results to experiments for the VUV, UV, visible, and near-IR 

ranges.

- Identify models and parameters for future improvement.
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Radiation Model

• Line-by-line, tangent slab computation along a line of 

sight.

• Multiple spectral and spatial broadening mechanisms 

are accounted for.

• Instruments convolutions are applied to mimic 

experimental smearing.

• Number densities and temperatures are passed to 

NEQAIR.

- Four temperature calculation (Ttr, Trot, Tvib, Te).

- Currently, only a Boltzmann calculation for H is available. 

NEQAIR:
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0.2 Torr Shock Simulation

• Shock velocity: 27.8 km/s

• Initial pressure: 0.2 Torr

• Initial temperature: 300 K

• Freestream 89% H2: 11% He

• H2 is dissociated by ~1.5 cm.

• H slightly diffuses upstream.

• Ionization begins immediately.

- Degree of ionization is <10%.

- Equilibrium has not been reached by 5 

cm.

- Higher electron number density than 

the experiment.

- Expected equilibrium electron number 

density of 4.2×1021 m–3.

EAST Shot 25:

e– Equil.
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0.2 Torr Shock Simulation

VUV

Visible

UV

Near IR

NEQAIR Results:

• Radiance is generally 

over-predicted.

• Radiance 

measurements are 

roughly the correct 

shape.

• Molecular and 

Lyman-α emission 

occurs post-shock.

• Induction period is 

not seen in the 

simulation.
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0.1 Torr Shock Simulation

• Shock velocity: 27.4 km/s

• Initial pressure: 0.1 Torr

• Initial temperature: 300 K

• Freestream 89% H2: 11% He

EAST Shot 17:

• H2 persists more than twice the post-

shock distance than Shot 25.

• H diffuses much further upstream.

• Equilibrium has not been reached by 

5 cm.

- Expected equilibrium electron number 

density of 2.0×1021 m–3.

- Electron number density is trending 

towards this value, but still overshoots 

far downstream.

e– Equil.
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0.1 Torr Shock Simulation

VUV

Visible

UV
NEQAIR Results:

• Similar comparisons

as Shot 25.

• Radiance seems to 

take the correct

shape.

• VUV radiance spike 

is approximately the 

correct width.

• Induction period is 

not seen in the UV 

range.

• Visible range 

radiance increase at 

the shock front for 

both.
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1Cruden and Bogdanoff, “Shock Radiation Tests for Saturn and Uranus Entry Probes”

0.1 Torr Shock Simulation

VUV
NEQAIR Results:

Visible

UV

• Pre-shock radiation 

misrepresentation 

could be due to 

various model 

shortcomings.

- Ambipolar diffusion is 

not included in the 

DSMC model.

- QSS rates for H are 

not yet included in 

NEQAIR.

- Te modeled as the 

free electron kinetic 

temperature.

• Hot Hydrogen diffuses upstream.

- H Lyman-α emission (n=2 →1) should occur 

upstream.

- With the correct Te, these particles should be 

emitting.

• Cruden1 determined that H is optically thick 

as low as 1.0×1018 m–3.

- Simulated H passes this value at the same 

location that the experimental radiance 

increase.

• NEQAIR requires an 

electronic

temperature.

- Te is zero upstream 

of the shock.

Optically 
thick
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Conclusions

• An electronic excitation model was introduced to the DSMC code.

• High temperature DSMC parameters were obtained for a H2-He 

mixture.

• A 0-D relaxation was performed and the correct equilibrium was 

obtained.

• First attempts at simulating a non-equilibrium H2-He shock were 

completed and results were linked to the NEQAIR radiation solver.

- Results were compared to the EAST experiments.

- Non-equilibrium was confirmed with experiments to persist far downstream.

- Atomic Hydrogen diffusion was observed upstream.

- Simulated free electron number density was higher than the expected 

equilibrium values.

- The ionization inductance period was not seen in the simulated radiance.

- Simulated radiance was much higher than expected, but generally had the 

correct shape.
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Future Work

• Formulate an improved representation of electronic temperature.

• Implement a more sophisticated chemical reaction model for 

recombination reactions in the DSMC code.

• Include quasi-steady state rates for H in NEQAIR.

• Perform a sensitivity analysis on the input parameters to identify the 

most important models and parameters that need improvements.

High Priority:

Low Priority:

• Model ambipolar diffusion in the DSMC code.

• Obtain high temperature data for H2 rotational relaxation and develop 

a temperature dependent equation.
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Questions?

• An electronic excitation model was introduced to the DSMC code.

• High temperature DSMC parameters were obtained for a H2-He 

mixture.

• A 0-D relaxation was performed and the correct equilibrium was 

obtained.

• First attempts at simulating a non-equilibrium H2-He shock were 

completed and results were linked to the NEQAIR radiation solver.

- Results were compared to the EAST experiments.

- Non-equilibrium was confirmed with experiments to persist far downstream.

- Atomic Hydrogen diffusion was observed upstream.

- Simulated free electron number density was higher than the expected 

equilibrium values.

- The ionization inductance period was not seen in the simulated radiance.

- Simulated radiance was much higher than expected, but generally had the 

correct shape.

Conclusions:
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Questions?
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0.2 Torr Shock Simulation

• Shock velocity: 27.8 km/s

• Initial pressure: 0.2 Torr

• Initial temperature: 300 K

• Freestream 89% H2: 11% He

• H2 is dissociated by ~1.5 cm.

• H slightly diffuses upstream.

• Ionization begins immediately.

- Degree of ionization is <10%.

- Equilibrium has not been reached by 5 

cm.

- Higher electron number density than 

the experiment.

- Expected equilibrium electron number 

density of 4.2×1021 m–3.

EAST Shot 25:

• Comparing before (dashed) and 

after (solid) including an electronic 

excitation model.

- Electron number density increase by 

two orders of magnitude.

- Temperature is static without 

electronic excitation.

e– Equil.


