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The National Airspace System is a highly complex system of systems within which a 

number of participants with widely varying business and operating models exist. From the 

airspace user’s perspective, a means by which to operate flights in a more flexible and efficient 

manner is highly desired to meet their business objectives. From the air navigation service 

provider’s viewpoint, there is a need for increasing the capacity of the airspace, while 

maintaining or increasing the levels of efficiency and safety that currently exist in order to 

meet the charter under which they operate. Enhancing the communication between airspace 

operators and users is essential in order to meet these demands. In the spring of 2015, a 

prototype system that implemented an airborne tool to optimize en-route flight paths for fuel 

and time savings was designed and tested. The system utilized in-flight Internet as a high-

bandwidth data link to facilitate collaborative decision making between the flight deck and an 

airline dispatcher. The system was tested and demonstrated in a laboratory environment, as 

well as in-situ. Initial results from these tests indicate that this system is not only feasible, but 

could also serve as a growth path and testbed for future air traffic management concepts that 

rely on shared situational awareness through data exchange and electronic negotiation 

between multiple entities operating within the National Airspace System. 

Nomenclature 

AOC  = Airline Operations Center 

ASTOR = Aircraft Simulation for Traffic Operations Research 

ATC = Air Traffic Control 

ATM = Air Traffic Management 

ATOS = Airspace and Traffic Operations Simulation 
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DIP = Dispatch Interface Program 

DSP = Database Server Program 

EFB = Electronic Flight Bag 

FALCN = Flight Adjustment Logging and Communications Network 

FMS = Flight Management System 

HMI = Human-Machine Interface 

IFI = In-Flight Interface 

IP = Internet Protocol 

NASA = National Aeronautics and Space Administration 

STAP = Simplified Text Avionics Protocol (ARINC 834) 

TAP = Traffic Aware Planner 

TASAR = Traffic Aware Strategic Aircrew Requests 

TCP = Transmission Control Protocol 

XML = eXtensible Markup Language 

I. Introduction  

The Network-Enabled Air Traffic Management (ATM) subproject at the National Aeronautics and Space 

Administration (NASA) is investigating methods to apply advanced networking concepts, modern information sharing 

technologies, and innovative distributed processing technologies to air traffic operations in order to improve safety, 

efficiency, capacity, and robustness of integrated decision making in air traffic management.  

As part of this subproject, NASA is investigating several ATM applications and concepts that would benefit from 

enhanced data sharing; the Traffic Aware Strategic Aircrew Requests (TASAR) has been identified as the leading 

concept at NASA Langley. TASAR utilizes a pattern-based genetic algorithm1 in a software application known as the 

Traffic Aware Planner (TAP) which is hosted on a Class 2 Electronic Flight Bag (EFB) on the flight deck of an aircraft. 

TAP generates a flight path that is deconflicted for traffic, weather, special use airspace, etc., while focusing on 

calculating a fuel, time, or combination benefit for the flight. These calculations are based on data regarding the current 

aircraft trajectory, weather, winds aloft, and other aeronautical information. A user interface for TAP presents three 

types of suggested route modifications to the flight crew—a vertical route modification only (flight level change), a 

horizontal route modification that conforms to named waypoints in the National Airspace System2 only, and a 

combination vertical and horizontal route modification that is exclusive of both the vertical-only and horizontal-only 

route modifications3. The pilot can then choose to request one of the suggestions as a standard route modification 

request to air traffic control (ATC)4. 

The TASAR concept has been tested both in human-in-the-loop simulations and in a flight test5. Additionally, the 

development of TAP considered certification for operational use6, 7. Furthermore, analyses show the preliminary 

benefits that TASAR would provide for an air carrier8. The benefits study and discussions between the TASAR team 

members and several domestic airlines resulted in two airlines expressing interest in equipping their aircraft with 

TASAR technology.  

The airline stakeholders interested in TASAR have expressed the desire to be able to display TASAR-suggested 

flight path modifications to dispatchers located at their airline operations centers (AOC). Current avionics and 

communication infrastructures do not yet transmit the information required to display this information at an AOC. 

However, it is hypothesized that this information can be made available to ground-based systems at an AOC by 

utilizing an existing data link, such as in-flight Internet.  

This paper is organized as follows: Section II introduces the prototype system developed for this proof-of-concept 

activity. The laboratory system arrangement, including the simulation environment, the configuration of the system, 

the test scenario, and the results and impacts of the laboratory testing are discussed in Section III. Section IV provides 

a discussion regarding an in-situ proof-of-concept experiment and discusses the results of the in-situ testing of the 

FALCN system. Finally, conclusions are presented in Section V. 

II. Prototype System 

Through the use of existing in-flight Internet connectivity, a prototype system was designed and built that transmits 

aircraft state, intent, and route modification data to an AOC, resulting in the inclusion of dispatcher feedback in any 

rerouting decisions made by the flight crew. Once a dispatcher evaluates a flight crew’s request, his or her response 

is sent back to the flight crew via the same in-flight Internet connection. With dispatcher recommendation, the flight 

crew can then decide whether to request a new route clearance from ATC or stay on the current route. This system 

has been named the Flight Adjustment Logging and Communications Network (FALCN). 
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A. FALCN Component Overview 

FALCN consists of four main components—an in-flight interface for the flight crew, a database server program 

that controls the communications between the air and the ground, a database for storing and retrieving data, and a user 

interface for an airline dispatcher that enables review and the ability to provide recommendations to the flight crew 

regarding proposed en-route flight path modifications generated by TAP. This section of the paper discusses the 

individual components of FALCN at a high-level. For more detailed information on each of these components, see 

reference 9.  

1. In-Flight Interface 

The In-Flight Interface (IFI) is a user interface designed to allow the flight crew to easily make a selection of a 

TAP generated route and send the selected route information to dispatch for review. Additionally, it gathers the aircraft 

state and intent data and transmits them to the Database Server Program (DSP). In the prototype system, the IFI is a 

standalone piece of software that interacts with the TAP interface. In future implementations of FALCN, the IFI will 

be fully integrated into the TAP human-machine interface (HMI).  

The IFI has a login screen that allows a flight crew to input flight-specific data, including the aircraft tail number 

and the flight number, as well as the Internet Protocol (IP) address of the server that the DSP resides on. In future 

iterations of the login screen, security features (e.g., username and password authentication) will exist. Once the flight 

information and positive contact with the DSP are confirmed, the main IFI interface will become functional and the 

IFI and the TAP programs will begin to communicate. 

During flight, TAP generates optimized flight route solutions once per minute when routes that improve the fuel 

or time efficiency are identified. Once a solution is selected by the flight crew in the TAP HMI, the IFI will populate 

with the information corresponding to the selected solution in TAP. At this time, the pilot has the option to send the 

request to the dispatcher for concurrence. The dispatcher reviews the request and sends a decision to the IFI via the 

DSP and in-flight Internet, where it is presented to the flight crew. 

2. Dispatch Interface Program 

The Dispatch Interface Program (DIP) allows the dispatcher to effectively consult with the flight crew to reach an 

agreeable plan of action. The DIP features several areas on the interface where information is displayed to the 

dispatcher. The Incoming Route Request table is a queue of all incoming route modification requests from flight 

crews. The route modification requests, as well as aircraft state and intent data are gathered from the DSP. When the 

dispatcher approves a route modification, the row is translated from the Incoming Route Request table to the Approved 

History table. If the dispatcher disapproves a flight crew’s requested route modification, the flight crew is notified on 

the IFI and the request is removed from the Incoming Route Requests table.  

The final aspect of the DIP is an interactive map. The map is included to improve the usability of the interface and 

provide information to the dispatcher as efficiently as possible. Having an interactive map allows the dispatcher to 

graphically visualize the proposed route quickly, without having to examine the route textually. Minimizing additional 

dispatcher workload is a vital aspect for adding the DIP to a dispatcher’s current suite of interfaces.  

3. Database Server Program 

The Database Server Program is the communications hub of the FALCN system. It provides the interface through 

which the IFI and the DIP communicate and store data. The DSP handles clients by identifying whether the connection 

originates from a flight or a dispatcher and determining the specifics of the request. This requires parsing the server 

socket stream and developing a query to appropriately manage database interactions. Unlike the IFI and DIP, the DSP 

has no front end user interface and requires no direct human interaction to operate. 

When an IFI client connects to DSP, the server checks the incoming data and classifies the type before inserting 

the information into the FALCN Database. The DSP stores data transmitted from the aircraft in the database, and any 

pending dispatcher responses are retrieved from the DIP and relayed back to the IFI for display to the flight crew. 

When a DIP client connects to DSP, the server retrieves a list of active requests and returns them to the DIP for display 

to the dispatcher. The server will also notify the DIP of cancelled requests and when there is an ATC decision update 

available for an accepted request. 

4. FALCN Database 

The FALCN database is designed as a relational database—every table within the database is related, or linked, to 

each other by a flight number key. The database was constructed to hold five tables: Aircraft State Information, 

Aircraft Intent Information, TAP Route Modification Requests, History, and Reasons. The Aircraft State Information 

table holds identification and state data information records (e.g., callsign, current altitude, current position, and 

airspeed). The Aircraft Intent Information table stores limited intent information in the form of the current active flight 

plan in the Flight Management System (FMS). The TAP Route Modification Requests table holds TAP route 
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modification requests (e.g., off-route waypoint name, waypoint latitude and longitude, and fuel/time savings). This 

table updates any time a route modification request is sent from the IFI. The History table is a log of air traffic 

controller and dispatcher decisions with corresponding reasons describing the approval or denial of route modification 

requests. The History table will allow the airlines to review previous flights and analyze data trends. This table is 

updated whenever a decision regarding a flight route modification is made by a dispatcher or a controller. The Reasons 

table correlates a numeric reason value stored in the History table with a textual description stored within the Reasons 

table.  

B. System Architecture and Data Flow 

Figure 1 depicts the system architecture and data flows between components that comprise the FALCN system. 

As mentioned in the previous section, the IFI, DSP, DIP, and FALCN Database are the core components of the system. 

Data from the TAP application is also required for FALCN.  

To deploy the TAP software to a variety of platforms, including EFBs running Microsoft Windows or Apple iOS, 

the TAP algorithmic engine was separated from the TAP HMI. This was done to allow the computationally light HMI 

to run on an EFB, while the computationally heavy algorithmic engine runs on a separate dedicated processor. Two 

eXtensible Markup Language (XML) files—one generated by the TAP algorithmic engine and the other generated by 

the HMI—log all data transferred between the algorithmic engine and HMI. The TAP algorithmic engine provides 

data including the aircraft’s state and intent as well as the calculated route modification solutions and their time and 

fuel outcomes to the TAP HMI. The TAP algorithmic engine provides updated state data to the TAP HMI at 1 Hz, 

and the intent data (FMS flight plan) is updated only when the active route in the FMS changes, such as when a 

waypoint in the route is sequenced, or when the flight crew enters a TAP-generated flight route modification. 

Additionally, the TAP algorithmic engine provides updated route modification solutions once per minute to the TAP 

HMI, and updates the fuel and time outcomes every ten seconds. 

The IFI obtains the state and intent information as it is updated and recorded in the XML file generated by the 

TAP HMI. It then transmits these data over a network via Transmission Control Protocol (TCP) packets to the DSP. 

Whenever the flight crew 

selects a solution on the 

TAP HMI, the IFI gathers 

the route modification 

information from the 

XML file and displays it 

on the FALCN IFI. When 

the flight crew makes a 

request via the IFI, it 

sends the route 

modification request via 

TCP packets that contain 

a string expressed as 

either named waypoints 

(lateral solution), a flight 

level (vertical solution), 

or a combination of the 

two (combination 

solution), as well as the 

fuel and time outcomes 

for the selected solution. 

The IFI also gathers and 

transmits the updated fuel 

and time outcomes as they 

are calculated and sent 

from the TAP algorithmic 

engine. 

The DSP receives 

these packets, parses 

them, stores these data in 

 

Figure 1. System Architecture and Data Flow. The network system illustrated in 

this figure may be an in-flight Internet system, a terrestrial Internet system, a wireless 

local area network, or a hardwired local area network.  

FALCN Database 
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the FALCN Database, and communicates these data to the DIP so that a dispatcher can act upon the information. 

When a dispatcher makes a decision, the DIP transmits that data via TCP packet to the DSP, where it is stored in the 

FALCN Database and simultaneously sent to the IFI for the pilot to act upon.  

III. Laboratory Proof-of-Concept Methodology and Results 

For the initial development and demonstration of the prototype system described in Section II, a ground-based 

simulation and development environment was created. This section describes the test equipment, simulation 

capabilities, simulation configuration, and the scenario used to test the system, as well as results and impacts of the 

proof-of-concept demonstration. 

A. Test Equipment and Simulation Capabilities 

NASA’s Airspace and Traffic Operations Simulation (ATOS) is a medium-fidelity traffic simulation designed to 

enable researchers to develop and test vehicle-centric ConOps for NextGen implementation10. The fidelity and 

scalability achieved by ATOS results from its architecture, which links many individual aircraft simulations. To add 

additional aircraft to the simulation, computers are added to the network. ATOS is capable of supporting human-in-

the-loop experiments or batch simulations11. 

The primary aircraft simulation within ATOS is the Aircraft Simulation for Traffic Operations Research (ASTOR), 

which combines a six-degree-of-freedom airframe simulation, flight management and autoflight systems, modern 

glass displays, and a simulation of an ARINC 429 data bus. ASTOR can be implemented on a range of workstations 

or simulators with various levels of fidelity, or it can be run with a pilot simulation replacing a human pilot10.  

B. Simulation Configuration 

For this study, three computers were networked together to emulate the expected implementation of FALCN. All 

computers used in this configuration are Dell OptiPlex 745 machines with dual-core Intel Pentium D processors. Each 

computer has a network interface card that allows it to transmit and receive data via Ethernet. A Linksys EZXS55W 

network switch connects the three computers. A depiction of the configuration can be seen in Figure 2, and an image 

of the simulation setup can be seen in Error! Reference source not found.. 

Computers 1 and 2 represent the in-flight components of TAP and FALCN described in Figure 1. A single-pilot 

ASTOR station (seen on 

the left in Figure 3), the 

ATOS Simulation 

Manager, and the TAP 

algorithmic engine exist 

on Computer 1. The 

ASTOR used in this 

study has a math model 

that is representative of a 

Boeing 757, and glass 

cockpit displays 

consistent with a Boeing 

777. The ATOS 

Simulation Manager 

controls the execution of 

the simulation. The TAP 

algorithmic engine 

communicates with the 

ASTOR through the 

simulated ARINC 429 

data bus. A Data 

Concentrator Emulator 

converts the ARINC 429 

words into a Simple Text 

Avionics Protocol 

(STAP) feed following 

the standards set forth in 

 

Figure 2. FALCN Simulation Environment. Computers 1 and 2 represent the 

airborne capabilities, and computer 3 represents the ground-based capabilities.  
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ARINC 834 before the aircraft 

systems data is transmitted to the 

TAP algorithmic engine. The 

algorithmic engine then sends this 

information over the network to 

Computer 2. The second machine 

hosts the TAP user interface, seen 

in the left-center of Figure 3, and 

the IFI, seen in the right-center of 

Figure 3.  

Finally, Computer 3 represents 

the ground-based components of 

the FALCN system (seen in Figure 

1) that would be located at an 

airline’s flight operation center. 

The third computer hosts the DSP 

and DIP. The DIP is shown on the 

right of Figure 3. 

C. Test Scenario 

To develop the FALCN 

software and assess its integration with the TAP software, a test scenario was utilized. The scenario featured a flight 

from John F. Kennedy International airport in New York City to Denver International Airport. The scenario initialized 

over Pennsylvania, just west of Philadelphia, at FL300. The flight route was sub-optimal due to impacts from a region 

of Special Use Airspace and convective weather.  

TAP was connected to the aircraft systems and provided optimized route modifications to the flight crew. As well, 

FALCN was connected to TAP and offered the opportunity for the flight crew to contact dispatch. On-the-ground 

systems (the DSP, DIP, and FALCN Database) were connected to a local network and provided the dispatcher with 

the TAP route modifications that were sent from the IFI. 

D. Laboratory Demonstration Results and Impacts 

In April 2015, the system was demonstrated to an internal group of NASA civil servants and contractors who are 

familiar with the TASAR concept of utilizing a high bandwidth data link, such as in-flight Internet, to augment current 

communication infrastructures that provide data to airborne ATM concepts and applications. The system has also been 

demonstrated to external stakeholders, including in-flight Internet service providers and ATM concept developers. 

1. Results 

The demonstration was successful and accomplished the goals set forth at the start of the activity. Data was 

successfully communicated between TAP, the IFI, and ground-based FALCN subsystems. A worst-case bandwidth 

requirement for the data being communicated by FALCN of 24 kilobits per second was derived, which is roughly 

forty percent of the maximum dial-up Internet bandwidth. The feasibility of in-flight Internet providing enough 

bandwidth to support this concept was confirmed. Round-trip latency was essentially null due to the hardwired local 

area network. 

2. Impacts 

After the demonstration was given, the project leaders of TASAR/TAP provided valuable constructive criticism 

and advice for future development. Among these suggestions were changing the verbiage on both the IFI and the DIP 

to more accurately reflect the roles and responsibilities of the dispatcher, refining the procedure for using FALCN, 

and finally, integrating the IFI with the TAP HMI and adding logic to notify the flight crew when a dispatcher’s 

concurrence was necessary. These suggestions were noted and will eventually be features of a new version of FALCN.  

Based on the success of the laboratory testing, it was decided to test the FALCN system in-situ. Data such as 

round-trip latency were required to further validate the feasibility of using FALCN as well as to adjust the procedures 

for using FALCN, and that data could only be gathered in-situ. 

 

Figure 3. Simulation Environment in Laboratory. The ASTOR, TAP HMI, 

IFI, and DIP are shown in operation. Not shown is the ATOS Simulation 

Manager. The TAP algorithmic engine and the DSP have no user interfaces.  

ASTOR TAP 

IFI 

DIP 
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IV. In-situ Proof-of-Concept Methodology and Results 

To validate the design of the FALCN system, an in-situ flight testing activity was designed and implemented. In 

addition, software was created to gather data on round trip (air-ground-air) latency and connectivity. This section 

describes the test design, modifications made to the laboratory proof-of-concept simulation capabilities, the in-situ 

system configuration, and results and impacts of the in-situ demonstration. 

A. In-Situ Test Design 

To minimize cost and maximize the amount of data gathered, a test was designed to utilize existing in-flight 

Internet communication systems on commercial flights. For this proof-of-concept activity, researchers from NASA 

Langley Research Center ran the FALCN IFI software on laptops on-board commercial flights. The FALCN DSP and 

DIP were run on servers at an on-site contractor’s facility. For the test to be considered successful, data would be 

transmitted autonomously from the IFI programs running on the laptops onboard the aircraft, through the in-flight 

Internet, to the DSP on the ground. The DSP then transfers the data to the DIP on the ground, a human would respond 

to the route modification request through DIP, and the response would be transmitted through the DSP to the IFI 

programs on the laptops onboard the aircraft.  

B. Modifications from Simulation Capabilities 

To test the system in-situ, the FALCN software was modified. The modifications included updating the software 

from Windows XP to Windows 7, creating a partially-automated version of FALCN, and employing configuration 

files. Additionally, a means by which to obtain the data transferred from the TAP algorithmic engine to the TAP HMI 

without running TAP was required. Finally, software that gathers data on the round-trip latency and drop-out rate of 

in-flight Internet communications was required.  

The re-implementation of FALCN for the Windows 7 operating system involved updating the libraries for the 

communications and for the HMIs, and upgrading the database software. The necessity for automating the FALCN 

functionalities stemmed from the in-situ demonstration and test. It was desired for the IFI to autonomously transmit 

in-flight data to a ground server. These modifications included delegating the data parser in the IFI to search through 

the XML code for a new solutions update from TAP and to always select the combination vertical and lateral route 

solution. Additionally, logic was designed and implemented in the IFI and DSP to change certain Boolean flags to 

allow for automated transmission and reception of data by the IFI. These modifications altered the IFI program’s 

behavior to search for a new solution update from TAP, to always select the combination vertical and lateral route 

modification solution, and to automatically transmit that solution information to the DSP. 

Additionally, the use of configuration files for setting initial conditions was required due to the new automated 

functionality. This would enable researchers to input specific data requirements, such as flight number, aircraft 

number, and IP address that would have otherwise been input on the login screen of the IFI.  

For TAP not to be required for the in-situ proof-of-concept demonstration, and since none of the researcher’s 

laptop computers are connected to flight systems, a means by which a TAP-generated XML file could be created was 

required. An XML replayer script was written that accepts as input a saved XML file from the laboratory setup, and 

outputs a duplicate file in the same manner that TAP would create the file.  

Finally, software was created to gather the round-trip latency data. The software utilized the “Ping” function, which 

sends a small packet (64 bytes) of data to a particular IP address. The computer that sends the packet waits for a return 

packet, then calculates the time difference from when the packet was sent by the host computer and when it was 

received by the host computer. The IP address pinged by the computer on-board the aircraft (the researcher’s laptop) 

was the IP address of a server located in Hampton, VA.  

C. System Configuration 

For the in-situ FALCN system configuration, three computers are required. Figure 4 shows a graphical depiction 

of the system configuration. The first computer, an HP laptop running Windows 7, hosts the TAP XML file replayer 

and the IFI. This computer is connected to the in-flight Internet onboard an aircraft. The IFI autonomously sends and 

receives data from the DSP, as mentioned in Part B.  

Computer 2, a ground-based Linux server, runs the DSP and hosts the FALCN Database. This server exists in a 

perimeter network that is external-facing to the Internet. The second computer communicates with the IFI on-board 

the aircraft and the DIP, which is hosted on the third machine.  

The third computer, Computer 3, hosts the DIP and communicates only with the DSP. In this configuration, the 

DIP was not automated and required a human to operate it.  
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This configuration more 

resembles the end-user 

implementation at an AOC, 

where each aircraft has an 

instance of the IFI 

communicating with TAP 

(represented by Computer 1 in 

Figure 4), an external-facing 

server hosting the DSP 

(Computer 2 in Figure 4), and 

an instance of the DIP for 

each dispatcher running on his 

or her local machine 

(Computer 3 in Figure 4). 

Computers 2 and 3 were 

networked via a wireless local 

area network, however, in 

some implementations, 

depending on the network 

configuration of the AOC, 

this network may be 

implemented through a 

hardwired local area network. 

D. In-situ 

Demonstration Results 

The in-situ flight 

demonstration activity was a 

success. Ten test flights were 

conducted during this activity.  

The first set of test flights 

included round-trip flights from Norfolk, VA to Dallas, TX and Atlanta, GA, as well as a round trip flight from 

Richmond, VA to Boston, MA. A second set of test flights were used to gather additional latency data and determine 

the robustness of the connectivity when using air-to-ground Internet. The second set of flights included flights from 

Norfolk, VA to Atlanta, GA, from Atlanta, GA to Oklahoma City, OK, and return flights on those same legs. During 

the flight test activities, over 25,000 data points were obtained for latency values and 3,445 data points were gathered 

in order to determine the robustness of the Internet connectivity. 

During the outbound flights of the first set of testing, FALCN was successfully able to transmit the pre-recorded 

data from the researcher laptop located on the aircraft, through the in-flight Internet to the DSP and ultimately to the 

DIP. Additionally, a developer who was operating the DIP was able to respond to the requests that were sent from the 

researchers on the aircraft and the researchers were able to see the responses on the aircraft. The operation of FALCN 

was successful, and the feasibility of using this system in-flight was proven.  

The software that gathered latency data was designed in order to provide valuable insights into impediments that 

may limit the operation of FALCN in-situ. If communication latencies were on the order of 30 seconds or greater, 

then it was assumed that using FALCN in operations and acting on data that was transmitted through FALCN would 

be infeasible. However, of all the latency values that were gathered in all flights (25018 data points), 5.47% of the 

recorded latencies were over 1 second, 0.474% were over 2 seconds, and 0.0518% were over 3 seconds, with the 

maximum latency being 3.757 seconds. The number of large round-trip latency values (large defined as round-trip 

latency values greater than 1 second) was found to be inconsequential to the use of FALCN in-situ.  

The average latency value for all data gathered during all flights was 476.8 ms, with a standard deviation of 308.1 

ms. The median round-trip latency value was 396 ms, the maximum was 3.757 seconds, and the minimum latency 

value was 112 ms. 

 

Figure 4. Configuration for In-situ Demonstration. Computer 1 represents the 

in-flight component of the FALCN system. Computer 2 was an external-facing 

server at an on-site contractor’s facility, and Computer 3 was a computer located 

at the on-site contractor’s facility.  
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To refine the procedures in simulation 

rather than in-situ, a statistical model of in-

flight Internet performance that accurately 

represents the natural behaviors that are 

expected when using in-flight Internet for 

ATM operations was created. To create the 

model, several distributions were fit to the 

data gathered during the flight test. The data, 

when presented in the form of a histogram, 

looked like a lognormal distribution. 

However, literature12, 13 suggested that 

network latency data may align with either a 

lognormal, Weibull, Rayleigh, or Gamma 

distribution. Analysis, as seen in Figure 5, 

revealed that these data were best fit to a 

lognormal distribution with a mu parameter 

of 6.0075 and a sigma parameter of 0.54912.  

Finally, during the first series of flight 

tests, the researchers conducting the tests 

noted that the connectivity on board the 

aircraft was intermittent at times. Based on 

these observations, the software that gathered 

latency data was modified to gather data on 

the connection status of the in-flight Internet. 

The data gathered during the second series of 

flights showed that there was connectivity for 

93.3% of the time that the software was in use 

(at altitudes above 10,000 ft, in accordance 

with FAA regulations for operating personal 

electronic devices on an aircraft).  As well, as 

Figure 6 presents, when the connectivity was 

interrupted, the median interruption was 12 

seconds. The minimum connectivity drop-

out time was 7 seconds, and the maximum 

time that connectivity was lost was 

approximately 129 seconds. Eighteen data 

points out of 136 (denoted by the red crosses 

in Figure 6) represent those connectivity drop 

out times greater than approximately 30 

seconds.  

V. Conclusion  

This paper describes the proof-of-concept 

demonstrations and the feasibility of the 

FALCN system within laboratory and in-situ 

testing. The laboratory demonstration was 

confirmed with a worst-case bandwidth of 24 kilobits and a round-trip latency of close to null, with the local area 

network being hardwired as per system configuration design. To further prove feasibility, FALCN software was tested 

in-situ using commercially available in-flight Internet on ten commercial flights gathering over 25,000 latency value 

and 3,445 Internet connectivity data points. All data points averaged a round-trip latency time of 476.8 ms and returned 

a maximum time of 3.757 seconds and a minimum time of 112 ms. Furthermore, the connections proved to be robust 

and reliable approximately 93.3% of the time that the software was in use, with the largest connectivity drop-out time 

being 129 seconds. FALCN successfully transmitted and stored aircraft state, intent, and route modification requests 

via commercially available in-flight Internet, as well as demonstrated capabilities that in the future, may increase 

effective collaboration and communication between airline dispatchers, flight crews, and air traffic controllers. 

 

Figure 5: Histogram depicting round-trip latency value versus 

the probability of it occurring, as well as distributions fit to 

these data. These data were best fit to a lognormal distribution, 

followed by a Gamma distribution. 

 

Figure 6: Connectivity Drop-Out Time. Boxplot depicting the 

duration of connectivity loss during in-situ testing.  
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