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Numerical simulations are used to study laminar breakdown characteristics associated with 
stationary crossflow instability in the boundary-layer flow over a subsonic swept-wing configuration. 
Previous work involving the linear and nonlinear development of individual, fundamental modes of 
secondary instability waves is extended by considering the role of more complex, yet controlled, spectra 
of the secondary instability modes. Direct numerical simulations target a mixed mode transition 
scenario involving the simultaneous presence of Y and Z modes of secondary instability.  For the initial 
amplitudes investigated in this paper, the Y modes are found to play an insignificant role during the 
onset of transition, in spite of achieving rather large, O(5%), amplitudes of RMS velocity fluctuation 
prior to transition.  Analysis of the numerical simulations shows that this rather surprising finding can 
be attributed to the fact that the Y modes are concentrated near the top of the crossflow vortex and 
exert relatively small influence on the Z modes that reside closer to the surface and can lead to 
transition via nonlinear spreading that does not involve interactions with the Y mode. Finally, 
secondary instability calculations reveal that subharmonic modes of secondary instability have 
substantially lower growth rates than those of the fundamental modes, and hence, are less likely to play 
an important role during the breakdown process involving complex initial spectra.  

Nomenclature 
A =    Amplitude of crossflow instability mode or secondary instability mode, measured in terms of  

peak chordwise velocity perturbation and normalized with respect to freestream velocity 
C =    Wing chord length normal to the leading edge 
M =    Freestream Mach number 
m =    Fourier index of frequency mode 
N =    N factor (i.e., logarithmic amplification ratio) of linear crossflow instability or secondary instability 
n =    Fourier index of spanwise mode 
U =    Base flow streamwise velocity 
u =    Perturbation streamwise velocity 
X =    Chordwise coordinate in the direction perpendicular to the leading edge 
Y =    Cartesian coordinate normal to the X-Z plane 
Z =    Spanwise coordinate, i.e., the coordinate parallel to the wing leading edge 
 
DRE =    Discrete Roughness Elements 
LSIT =    Linear Secondary Instability Theory 
PSE =    Parabolized Stability Equations 
 
Superscripts 
+ =    Wall units  
∞  =    Free stream 
init =    Chordwise location where initial amplitudes of perturbations are set 
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I. Introduction 
VER the years, transition onset correlations based on linear stability theory have been quite successful in 
predicting trends with respect to changes in aerodynamic design variables and, perhaps more often than 

expected, have also been found to be reasonable at predicting the actual transition locations.1   However, wind 
tunnel2-4 and flight experiments5 by Saric and his colleagues have exposed the limitations of linear stability based 
transition prediction for swept wing boundary layers.  By documenting the extended nonlinear development of 
stationary crossflow vortices ahead of transition and the strong sensitivity of crossflow transition to surface finish 
and freestream turbulence levels, their experiments have established the need to employ more advanced techniques 
for transition prediction that account for both receptivity and the nonlinear phase of transition.  Transition prediction 
based on the linear amplification of  secondary instabilities6,7 accounts for the nonlinear evolution of crossflow 
vortices and, unlike the vortex amplitudes themselves, provides an adequately sensitive measure to predict the onset 
of transition.  Application of this technique to analyzing the flight experiment by Carpenter et al.5 is described by Li 
et al.7  Despite having a stronger physical basis, the secondary N-factor criteria has its own shortcomings.  Besides 
the need to model the initial amplitudes of the primary crossflow vortices, the presence of multiple unstable modes 
introduces an extra layer of uncertainty in the transition prediction process.  Furthermore, while the secondary N-
factor predictions may be correlated with the onset of transition, they do not provide any information about the rise 
of skin friction across the transition zone and its effect on the overall drag.  A better understanding of the nonlinear 
breakdown mechanisms is necessary to help guide the models for the transition zone.  Furthermore, knowledge of 
the breakdown dynamics is also expected to provide potentially valuable insights for the development of transition 
control techqniques.   
 There is a considerable body of knowledge concerning the details of the transition process in two-dimensional 
boundary layers.  However, only a few studies related to the laminar breakdown region of transition in crossflow 
dominated flows have been carried out to date.  In recent work, Duan et al.8 and Choudhari et al.9 have described the 
nonlinear breakdown of stationary crossflow vortices via Y and Z modes of secondary instability, respectively.  The 
present work is motivated by the need to extend those results to more complex (and yet controlled) initial spectra to 
provide the foundation to understanding the breakdown process in the natural disturbance environment involving 
broadband and stochastic unsteady disturbances.  An outline of the flow configuration of interest and the various 
numerical codes used during the present work is provided in Section II.  The previous work involving this flow 
configuration focused exclusively on the fundamental modes of secondary instability, which have the same spanwise 
wavelength as the primary crossflow vortices.  A brief summary of the mode shapes associated with the fundamental 
modes and the corresponding breakdown mechanisms is given in Section III.  Section IV describes the results of 
numerical simulations related to the mixed mode transition scenario, which involves a combined evolution of both Y 
and Z modes of secondary instability.  Summary and concluding remarks are provided in Section V.  A related 
accompanying paper11 extends the prior studies of the same airfoil configuration by investigating the effects of 
stationary subharmonics of the stationary crossflow vortices that modulate the stationary vortex pattern with a single 
dominant wavelength. 
 

II. Flow Configuration and Analysis Codes 

 The flow configuration of interest in this paper is identical to the laminar flow airfoil TAMU-003T-75(v.90) that 
was previously used by Duan et al.8 and Choudhari et al.9 to explore the breakdown characteristics of isolated Y and 
Z modes, respectively, of the secondary instability of stationary crossflow modes with a specified wavelength.  The 
design process for this laminar flow airfoil was described by Belisle et al.12 The 9.3 percent thick, 30-degree swept 
airfoil is designed to achieve natural laminar flow over 60 and 50 percent of the suction and pressure surfaces, 
respectively, at the design condition of zero degree angle of attack, Mach number of M = 0.75, and chord Reynolds 
number of approximately 17 million based on freestream speed, a streamwise chord length of 3.658 m (12 ft), 
freestream temperature of 216.65 K and density of 0.302 kg/m3.  The latter conditions  correspond to a flight altitude 
of 12,192 m (40,000 ft).  Design constraints for the wing included a lift coefficient that is typical of subsonic 
transport aircraft and a wing thickness distribution that is suitable for a mid-size business jet.  At the design angle of 
attack, both Tollmien-Schlichting and crossflow instabilities are sufficiently weak that natural laminar flow should 
be achievable over a significant portion of the airfoil surface (x/c>0.6 on the suction surface and x/c>0.5 on the 
pressure side) without any external means of boundary layer control.  In this paper, we focus on the off-design 
condition corresponding to an angle of incidence equal to -1 degree, i.e., the same condition as that used by Li et 
al.13 in their PSE and LSIT analysis. At this off-design condition, a stronger crossflow instability exists on the 
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suction side,12,13 which provides the basis for potentially implementing DRE-based laminar flow technology at the 
higher Reynolds numbers of interest.  
 For the work described in this paper, the mean boundary-layer flow over the suction surface of the airfoil was 
obtained from the boundary-layer solution obtained by Li et al.13 It was computed using a boundary layer solver 
BLSTA,14 designed specifically for generating accurate boundary layer solutions that are required for boundary layer 
stability analysis of swept and tapered wings, in conjunction with the inviscid surface-pressure distribution derived 
from an Euler solution under free flight conditions.12 The number of wall-normal points used for boundary layer 
computations was well in excess of that used by Wie14 for validating the BLSTA code. Sensitivity to streamwise 
resolution was also assessed by Li et al.13 by using 115, 229, 457 and 913 points over the chord length of interest 
(with proportionally greater number of points near the leading edge), and the solution had converged with 115 
streamwise points. Similar to the preceding work,13  the computations presented in this paper are based on 229 
points over the chord length. The boundary layer solution computed in this manner is suitably interpolated using 
cubic splines when necessary.    
 Linear and nonlinear development of the primary instability (i.e., stationary crossflow vortices) was computed 
using linear/nonlinear parabolized stability equations (LPSE and NPSE, respectively) as implemented in the Langley 
Stability and Transition Analysis Codes (LASTRAC).15  For nonlinear PSE marching, 281 points are used in the 
wall-normal direction (which is more than sufficient), and the streamwise marching step size was appropriately 
adjusted for each computation, if necessary, to capture the corresponding modal evolution. We denote the ranges of 
Fourier modes in the spanwise direction and those in time by (-m, m) and (-n, n), respectively.  A total of 48 
spanwise Fourier harmonics (m = 48) is used to compute the nonlinear development of a primary crossflow mode of 
specified spanwise wavelength, λ; and the truncation error is estimated a posteriori to be at least nine orders of 
magnitude smaller than the most energetic fundamental mode.   
 The growth of high-frequency secondary instability modes supported by the finite amplitude stationary crossflow 
vortex was analyzed by Li et al.13 with a fully spatial methodology described in an earlier paper.10  The main 
difference between the primary and secondary stability analyses is that the basic state for the secondary modes (i.e., 
the mean boundary layer flow modified by the primary crossflow mode) varies in both surface normal and spanwise 
directions; and hence, the instability characteristics of the secondary modes must be analyzed using a planar, partial 
differential equation based eigenvalue problem, rather than the ordinary differential equation based eigenvalue 
problem of the classical analysis.  The selection of grid and other aspects of the numerical solution were based on 
extensive experience with a similar class of flows and spot checks were made to ensure that the impact of reasonable 
variations with respect to those choices was negligible.  Typically, 121 points in the wall-normal direction and 65 
points in the spanwise direction were used for the 2D eigenvalue analysis involving subharmonic modes of 
secondary instability.   

To study the breakdown of finite-amplitude crossflow vortices due to the combined presence of Y and Z modes 
of secondary instability, a direct numerical simulation (DNS) is performed by solving the Navier-Stokes equations 
in generalized curvilinear coordinates. The working fluid is assumed to be an ideal gas with linear Newtonian strain-
stress relation.  The Fourier law is used for the heat flux.  A 7th-order weighted essentially non-oscillatory (WENO) 
scheme16,17 is used to compute the convective flux terms. This particular WENO scheme combines a high order of 
accuracy with relatively low dissipation, making it suitable for simulations of compressible transitional flows. The 
resolution properties of this scheme are documented in many references, e.g., Martin et al.18 For the viscous flux 
terms, a 4th-order central difference scheme is used and the 3rd-order low storage Runge-Kutta scheme by 
Williamson19 is employed for time integration.  Unsteady non-reflecting boundary conditions are imposed at the 
freestream boundary. At the outflow boundary, a buffer domain technique is used before the primitive variables are 
extrapolated at the outflow plane. The DNS code has been previously shown to be suitable for computing fully 
turbulent flows.20,21  In additional unpublished work, further validation of this code was performed in the context of 
the propagation of linear instability waves in a 2D, high-speed boundary layer.  Convergence studies showed that the 
7th-order WENO performs well at a resolution of 10 points per wavelength or higher, depending on the streamwise 
extent of the computational domain. 

The computational domain is approximately aligned with the axis of the primary crossflow mode and extends over 
more than 100 wavelengths of the Z-mode secondary instability wave with a frequency of 42.5 kHz.   For 
convenience of data processing, the frequency of the Y mode is selected to be 1.5 times the frequency of the Z mode 
(i.e., 63.75 kHz), which is close to the frequency of the most amplified Y-mode disturbance (62.5 kHz).  The size of 
the computational grid corresponds to 5,000× 96× 307 points in the chordwise, spanwise, and wall-normal 
directions, respectively. In terms of wall units of the fully turbulent flow near the outflow of the domain, the grid 
resolution in the streamwise (X) and spanwise directions (Y) corresponds to ΔX+ ≈ 10  and ΔY+ ≈ 12, respectively. 
The first grid point in the wall normal direction is located at ΔZ+ ≈ 0.6.  The spanwise resolution is too coarse to 
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resolve all scales of motion in the latter part of the transition zone as well as the turbulent flow region.  However, 
previous computations9,10 of the isolated evolution of the Y and Z modes with the same resolution as well as a 2.5 
times higher resolution suggest that the limited spanwise resolution is adequate to model the details of the transition 
process up to and slightly beyond the onset of transition, which is adequate for the purpose of this paper.   

III. Fundamental and Subharmonic Modes of Secondary Instability  
Li et al.13 performed NPSE calculations of the nonlinear evolution of isolated stationary crossflow modes for 

selected values of spanwise wavelength λ and initial amplitude of Ainit of the crossflow vortex. As discussed by Li et 
al.,13 nonlinear effects cause the region of fundamental mode growth to become smaller than the range of unstable 
locations predicted by linear PSE.  Thus, the location of peak disturbance amplitude is further upstream than the 
downstream branch of the neutral curve based on linear theory. For sufficiently small initial crossflow amplitudes 
(i.e., relatively smooth airfoil surface), only crossflow modes with spanwise wavelengths near λ = 8 mm achieve 
large enough amplitudes that are likely to induce a strong secondary instability and, hence, the onset of transition.    

 

  
(a) X/C = 0.3 (b) X/C = 0.4 

  
(c)  X/C = 0.5 (d)  X/C = 0.6 

 
Figure 1.  Chordwise velocity contours associated with a finite-amplitude crossflow mode. 

 
Figure 1 illustrates the cross-plane velocity contours during the nonlinear evolution of the stationary crossflow 

mode with λ = 8 mm for the case used for breakdown simulations in Refs. [8 ,9].  The initially undulating contours 
give way to strongly overturned contours with localized, inclined shear layers that are symptomatic of strongly 
inflectional velocity profiles in the outer part of the boundary layer.  Hence, the appearance of strong shear layers in 
the outer part of the boundary layer indicates a likely onset of high-frequency secondary instabilities that often 
signal the onset of laminar breakdown to turbulence.  These secondary instability modes can often be classified into 
two major types:13 those associated with the strong wall-normal shear of the modified basic state are known as Y 
modes and those associated with a strong spanwise shear are known as Z modes.  At times, when the mean shears in 
both directions make comparable contributions to the energy production mechanisms associated with the secondary 
instability, the resulting modes have a mixed character and, hence, are termed as Y/Z modes. In general, the 
spanwise wavelength of any secondary disturbance can be either equal to that of the fundamental wavelength of the 
stationary mode or correspond to an integer multiple thereof.  The larger wavelength modes are denoted herein as 
the subharmonic modes of secondary instability.    

Illustrative mode shapes depicting the cross-sectional distribution of peak chordwise velocity fluctuation 
associated with the different secondary mode disturbances are shown in Figs. 2(a) through 2(d).   Consistent with the 
underlying energy transfer mechanisms, the peak fluctuations for the Y modes are concentrated near the top of the 
inclined shear shear layer associated with the finite amplitude crossflow vortex, precisely where the wall-normal 
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shear is the highest.  On the other hand, the Z-mode fluctuations are concentrated along the lower, inclined portion 
of the shear layer.   These mode shapes also explain the lower phase velocity of the Z modes.  The mode shapes of 
subharmonic disturbances are generally similar to those of the fundamental modes of the same type.  However, some 
subtle differences between the mode shapes of both disturbance types are also apparent from Fig. 2.  In particular, 
the secondary lobes associated with the subharmonic Y modes (which are located below and above the primary 
shear layer region) are noticeably weaker than those associated with the fundamental modes.  In other words, the 
fluctuations induced by the Y-type subharmonic modes are spatially more concentrated than their fundamental 
counterparts.  An opposite observation may be made for the Z-type subharmonic modes, which extend over a 
majority of the inclined shear layer.  In contrast, the fundamental wavelength modes are more localized in nature.  
Finally, the peak fluctuations produced by the Z-type subharmonic modes are further away from the surface in 
comparison to their fundamental counterparts, which is consistent with the higher phase velocity of the subharmonic  
modes.  

 

  
(a) Mode Y-F (b) Mode Z-F 

  
(c)  Mode Y-S (d)  Mode Z-S 

 
Figure 2. Mode shapes in terms of the magnitude of chordwise velocity fluctuation for four dominant families of 
secondary instability modes at X/C = 0.5. Two spanwise wavelengths of the stationary crossflow vortex with λ  = 8 mm 
are shown in the figure. F: Fundamenal, S: Subharmonic. 

 
 

 Results of secondary instability analysis for the basic state in Fig. 1 have shown that the fundamental mode of 
the Y type has the highest growth rates in this case.  Although not shown herein, the growth rates of subharmonic Y 
modes are significantly lower than those of the fundamental Y modes, and the same is true for the Z modes as well.  
In general, the Y-mode secondary disturbances have higher phase velocities than the Z modes.  However, the 
difference between the phase velocities of the two mode types was found to be smaller in the case of the 
subharmonic modes.  Indeed, the phase speeds of fundamental secondary modes appeared to bracket the overall 
range of phase speeds for the secondary instability modes.  In future work, investigations will be carried out to find 
whether both the growth rates and the phase speed bandwidth of subharmonic modes continue to decrease with 
increasing subahrmonic wavelengths.  Results have also shown that the frequency range of Y modes with 
fundamental spanwise wavelength is nearly twice as large as the frequency range of the Z modes.  While the 
frequency bandwidth of Y modes appears to decrease from fundamental to subharmonic modes, the frequency range 
of Z modes appears to shift towards lower values as the spanwise wavelength of the secondary disturbances is 
increased when going from the fundamental modes to the subharmonic modes.  
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 Because of the substantially lower growth rates of the subharmonic secondary modes, they are less likely to play 
an important role during the breakdown process, and hence, are not considered further in this paper.  However, in 
principle, the receptivity characteristics of the flow can have a strong influence on which secondary modes would be 
excited in a given disturbance environment, and we note that the subharmonic secondary modes possess significant 
growth potential to influence the nonlinear phase of the transition process if the fundamental modes are not excited 
for some reason.  Hence, an understanding of the effects of the subharmonic modes still remains desirable.   
 

IV. Laminar Breakdown due to Combined Evolution of Y and Z Modes of Secondary Instability 
 
Having confirmed that the subharmonic modes are less likely to play an important role during the breakdown of 

crossflow instability in the flow configuration of interest, the present section targets another canonical aspect of 
increasing the complexity of inflow disturbances.  Specifically, the previous  simulations involving the evolution of 
a single secondary instability mode of the Y type8 or Z type9 are extended to address their joint evolution.   

The Y and Z modes that achieve the peak N-factors have frequencies of 62.5 kHz and 42.5 kHz, respectively.13  
For the mixed mode transiton analysis, the frequency of the Y mode is adjusted to a slightly higher value of 63.75 
kHz so that it is exactly 3/2 times larger than the Z-mode frequency, allowing phase locked nonlinear interactions 
between the two disturbances via their common harmonic at 127.5 kHz.  The growth rate of the Y mode is 
considerably higher than that of the Z mode.  Therefore, the initial amplitudes of the two modes are chosen such that 
both of them can simultaneously reach large enough amplitudes and collectively influence the location of transition 
onset.    

For computational efficiency, the inflow location for the simulations is chosen to be X/C=0.5, which is well 
downstream of the respective neutral points (near approximately 45 percent chord location) but is the same location 
as the inflow location in Refs. [9, 22].  Simulations are performed for various combinations of RMS amplitudes at 
the inflow location as listed in Table 1, A total of five cases are analyzed, two of which correspond to the earlier 
simulations involving a single mode inflow disturbance, i.e., Y mode alone22 and Z mode alone,9 respectively.  The 
remaining three cases correspond to new simulations of mixed mode evolution wherein the initial amplitude of the Y 
mode is held fixed at the same level as the purely Y-mode case in Ref. 22. And the inflow amplitude of the Z mode 
is increased from 0.5 to 1.0 times the value for the Z-mode only case in Ref. 9, such that the highest inflow 
amplitude of the Z mode in the mixed mode simulations is the same as that in the Z-mode only case.  In the order of 
increasing inflow amplitude of the Z mode, the three mixed mode simulations are denoted in Table 1 as cases Y-
Zlow, Y-Zmid, and Y-Zhigh, respectively. 

 
Table 1. Secondary instability initial RMS amplitudes at X/C = 0.5 scaled by the freestream velocity. 

 
Case Y mode 

(63.75kHz) 
Z mode 

(42.50kHz) 
Z-Y 

Amplitude 
Ratio 

Xtr/C 

Yonly (Duan et al.8) 0.00124 0 0 0.551 
Y-Zlow	
   0.00124	
   0.00288	
   2.33	
   0.546	
  
Y-Zmid	
   0.00124	
   0.00403	
   3.26	
   0.543	
  
Y-Zhigh	
   0.00124	
   0.00576	
   4.65	
   0.538	
  

Zonly (Choudhari et al.9) 0 0.00576 ∞  0.538 
 

An instantaneous snapshot of the DNS flow field in the first mixed mode case (Y-Zlow) is presented in Figs. 3 and 
4.  An isosurface of u = 165 m/s (i.e., approximately 67 percent of the local edge velocity at X/C= 0.54) is shown in 
Fig. 3, whereas the u = 225 m/s isosurface is plotted in Fig. 4. Upstream of the transition onset location of X/C= 
0.546, the u = 165 m/s isosurface in Fig. 3 indicates a series of ridges that are inclined with respect to the vortex axis 
and are centered along a spanwise location that approximately corresponds to the peak location of the Z-mode 
secondary instability.  The latter location lies between the crest and the trough of axial velocity contours 
corresponding to the finite amplitude stationary crossflow vortex.  The crests and troughs are formed as a result of 
the momentum exchange induced by the vortex. As nonlinear effects begin to influence the secondary instabilities, 
the ridges develop a localised spanwise oscillation near the peak of the secondary instability mode shape.  Further 
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downstream, this local deformation begins to spread out, particularly towards the wall and at approximately the 
same spanwise location relative to the axis of the stationary crossflow vortex.  Because the peak of the Z mode of 
secondary instability was located below the crests of the overturning contours, the tertiary fluctuations can quickly 
begin to influence the nearwall dynamics, which then leads to the onset of self-sustaining turbulence.  On the other 
hand, the u = 225 m/s isosurface in Fig. 4 clearly depicts the Y-mode instability that is concentrated near the crest of 
the crossflow vortex and the nonlinear development of this mode resembles that of the varicose instabilities modes 
of (symmetric) streaks and Goertler vortices in two-dimensional and axisymmetric boundary layers.23  The flow 
development in Figs. 3 and 4 confirms that both secondary instability modes seeded at the inflow location achieve 
large enough amplitudes to undergo nonlinear effects ahead of transition.  

 
 
 

	
  
Figure 3.    Instantaneous iso-surface corresponding to U = 165 m/s for Case Y-Zlow. 
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Figure 4.   Instantaneous iso-surface corresponding to U = 225 m/s for Case Y-Zlow. 

 
Figure 5 shows the time-averaged skin friction contours in the direction of the stationary vortex axis for the 

lowest amplitude ratio case. The skin friction increases relatively slowly at upstream locations. Then, wedges of 
much higher skin friction values appear suddenly to spread the turbulence spanwise. Once the wedges originating 
within individual vortices merge, the flow field become fully turbulent.  This transition scenario is identical to that 
described in Refs. [8, 9] for laminar breakdown due to purely Y-mode and Z-mode fluctuations, respectively.  The 
onset of transition has moved upstream from X/C = 0.551 in the Yonly case to X/C ≈ 0.546, confirming that the 
addition of Z-mode disturbance at the inflow has contributed to an earlier onset of transition, as expected. 
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Figure 5.   Contours of time averaged skin friction component parallel to vortex axis for the mixed mode case Y-

Zlow (i.e., lowest non-zero ratio of Z-Y inflow amplitudes). 
 

Figure 6 shows the chordwise evolution of the spanwise averaged skin friction component along the vortex axis 
for the three mixed mode cases.  In each case, a sharp rise in skin friction is clearly identifiable near X/C = 0.54.  For 
the discussion in this paper, the transition onset location is associated with the location of skin friction rise. The 
transition onset locations for the three mixed mode cases are X/C = 0.546, 0.543, 0.538, respectively, in the order of 
increasing initial amplitude of the Z-mode.  With the Y-mode amplitude fixed for these cases (Table 1), the 
upstream movement in transition with increasing Z-mode amplitude confirms the role of Z mode during the 
transition process.  
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Figure 6. Spanwise averaged skin friction in the direction of vortex axis with arrows indicating transiton onset 
locations. Blue: Lowest inflow amplitude of Z mode (Y-Zlow), Green: medium Z-mode amplitude (Y-Zmid),  Red: 
highest Z-mode amplitude (Y-Zhigh).	
  
 

Figure 7 (a) shows the chordwise evolution of the RMS amplitude of secondary disturbances at the fundamental 
frequency of the Y mode for each of the three mixed mode cases. The accompanying evolution of the Z-mode 
disturbance with increasing inflow amplitude is shown in Fig. 7(b).  Because the inflow amplitude of the Y mode is 
held fixed in all three cases, the disturbance amplitude at the Y-mode frequency evolves identically in the initial 
region, until about X/C = 0.54 where the RMS amplitude has reached a value of approximately 5 percent of the 
freestream velocity.  Shortly downstream, however, the Y-mode evolution exhibits a sharp rise that results in more 
than two-fold increase in the Y-mode amplitude.  However, this trend may or may not be physical in view of the 
limited spanwise resolution in the simulations, which was designed to capture only the initial part of the breakdown 
process.  With increasing inflow amplitude of the Z mode, the rapid rise in Y-mode amplitude moves progressively 
upstream.  However, the rise in Y-mode amplitude always lags the onset of transition as indicated by its position 
relative to the arrow indicating transition onset.  This raises a question regarding the role of Y mode during the 
transition process.  

The evolution of disturbance amplitude at the Z-mode frequency (Fig. 7(b)) indicates a similar trend as the Y-
mode evolution described above. Thus, the Z-mode amplitude increases exponentially during the initial, linear phase 
of development until the growth becomes somewhat slower due to the onset of weakly nonlinear effects.  However, 
after reaching a threshold amplitude of approximately five to six percent, the Z-mode amplitude rises rapidly to its 
peak value that is nearly three times larger than the threshold amplitude level.  The increase in Z-mode amplitude is 
not as rapid as that of the Y-mode amplitude, but is larger in magnitude, and furthermore, its onset leads the onset of 
transition in all three cases as compared to the delayed rise in Y-mode amplitude in Fig. 7(a).  The increase in Z-
mode amplitude continues past the transition onset location, before decreasing eventually as the flow proceeds 
through the transition region.  Again, the results in Fig. 7(b) confirm a significant role of the Z mode during the 
onset of transition.  
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(a) Fundamental harmonic of Y mode, 63.75 kHz  (b) Fundamental harmonic of Z mode, 42.5 kHz 

 
Figure 7. Comparison of amplitudes for different Z-mode to Y-mode amplitude ratios. Transition locations from 

Fig. 6 are indicated by the arrows.  Curve legends same as Fig. 7. 
 

Figure 8 shows the evolution of disturbance amplitudes at multiple frequencies as determined via Fourier series 
analysis of the time dependent flow field.  As alluded to at the beginning of this section, the Y-mode frequency 
corresponds to m=3 in the Fourier series, whereas the Z-mode frequency corresponds to m=2.  Nonlinear self-
interactions of the Y-mode generate harmonics m=0, 6, 9, 12, etc., whereas self-interactions of the Z-mode generate 
m=0, 4, 6, 8, 10, 12, etc.  Thus, the Y- and Z-mode disturbances can interact via harmonics 0, 6, 12, and so on.  A 
comparison of amplitude evolution for the mixed mode case with the Y-mode only case is shown in Fig. 8 (a), 
whereas Fig. 8 (b) shows the comparison of amplitude evolution for the same mixed mode case with the other pure 
mode case, i.e., the Z-mode only case.  Figure 8(a) shows that the presence of the Y mode has no effect on the 
development of the fundamental Z mode and its first harmonic. Its second harmonic is, however, affected because it 
is also the first harmonic of the fundamental Y mode.  On the other hand, Fig. 8(b) shows that the presence of the Z 
mode has virtually no effect on the Y mode up to the 4th harmonic of the fundamental Y-mode.  Overall, the results 
in Fig. 8 suggest that the Y-mode and Z-mode fluctuations do not exhibit any significant interactions in spite of 
achieving rather large amplitudes. 
 

	
   	
  
(a) Red lines: Y-Zhigh mixed mode case,  

dash-dot black lines: Case Yonly. 
(b) Red lines: Y-Zhigh mixed mode case,  

dash-dot green lines: Case Zonly 
 

Figure 8.   Comparison of RMS modal amplitude evolution for mixed mode Case Y-Zhigh with single mode cases 
Yonly and Zonly, respectively.   
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To further examine the nature of interaction between the Y- and Z-mode fluctuations, the time-RMS contours of 

fluctuating velocity component along the vortex axis at selected chordwise locations are plotted in Fig. 9.  Results 
for the Y-Zlow case are shown in the left column of Fig. 9 whereas contours for the Y-Zhigh case are shown in the 
right column. To help interpret the relative magnitudes of the Y- and Z-mode fluctuations regardless of the local 
value of the disturbance amplitude (which increases more than two orders of magnitude along the length of the 
computational domain), the fluctuation magnitudes are normalized such that the largest RMS amplitude has a value 
of unity at each selected station.  The time-RMS values are shown as flood contours, and the base flow contours of 
velocity component along the vortex axis are shown as thin white lines. For each set of inflow disturbance 
amplitudes, contours are shown at four different locations that represent various stages of secondary instability 
breakdown.  The inflow locations for the Y-Zlow and Y-Zhigh cases are shown in Figs. 9(a) and 9(b), respectively. 
Here, the fluctuation contours simply denote the Y-mode and Z-mode eigenfunctions with specified amplitudes as 
listed in Table 1.  As explained earlier, the less unstable Z mode has been assigned a larger initial amplitude than the 
Y mode with the expectation that both of them will reach comparable amplitudes prior to transition onset. The Z 
modes reside along the inclined boundary of the stationary crossflow vortex, while the Y modes reside on the crest 
of the vortex.  As expected from the relative values of the inflow amplitudes in Table 1, the Z-mode amplitudes are 
larger than the Y-mode amplitude in both Fig. 9 (a) and Fig. 9 (b).  

The second row of Fig. 9 (i.e., sub-figures (c) and (d)) represent the nonlinear stages of the secondary instability 
breakdown in cases Y-Zlow and  Y-Zhigh, respectively.  At these locations, the Y and Z modes are clearly distorted 
from the original mode shapes; but the flow field is still laminar. In the Y-Zlow case, the Y-mode amplitude has 
already become comparable to that of the Z-mode (Fig. 9(c)).  On the other hand, in the Y-Zhigh case (Fig. 9(d)), the 
larger growth rate of the Y-mode is not sufficient to overcome the increased disparity in inflow amplitudes; and 
hence, the peak amplitude of Y-mode fluctuations is still smaller than the highest level of Z-mode fluctuations.  In 
both cases, the contours of highest Y-mode fluctuations have expanded considerably from the inflow location, yet 
they have not begun to merge with the contours associated with highest Z-mode fluctuations.  Therefore, little 
interaction bewteen the two types of modes can be expected at the locations shown in Figs. 9(c)-(d).   

The third row of Fig. 9 (Figs. 9(e) and 9(f)) corresponds to the transition onset locations for the respective cases 
where the skin friction curves begin to rise sharply as indicated in Fig. 6. In both Figs. 9(e) and 9(f), the contours of 
RMS velocity fluctuation are highly distorted and bear little resemblance to their original shapes in Figs. 9(a) and 
9(b).  While the Y-mode fluctuations have had a visible impact on the outer part of the vortex structure as depicted 
in the mean velocity contours, their influence does not appear to have penetrated to the inner region of Z-mode 
fluctuations.  Thus, again, there is no obvious sign of interaction between the two mode types, although the contours 
originating from the two types of modes appear to have joined at an isolated location.  At transition onset, the peak 
Y-mode amplitudes are seen to be smaller than those of the Z-mode.  In addition, the Z-mode contours have spread 
further inward, getting close to exposing the wall region to high velocity fluctuations, so as to trigger the sharp rise 
in skin friction just downstream of this location. 

The bottom most row in Fig. 9 (i.e., Figs. 9(g) and 9(h)) corresponds to locations that are just downstream of the 
transiton onset locations for cases Y-Zlow and  Y-Zhigh, respectively.  At these locations, the Z-mode contours have 
extended sideways to cover a portion of the vortex span, indicating a spanwise spreading of the laminar breakdown 
process near the wall. On the other hand, the oscillations originating from the Y-mode are still restricted to regions 
away from the wall, and hence, does not play a major role in the transition process in spite of achieving rather large 
peak amplitudes.  Because of the different localized regions of the stationary crossflow vortex cross-section in which 
the Y- and Z-modes of secondary instability are active, the Y mode cannot interact with the Z-mode fluctuations 
closer to the surface. In all three mixed mode cases, therefore, the Z mode is the one that first reaches the wall and 
triggers transition to turbulence. 
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(a) X/C = 0.500, inflow 

 
(b) X/C = 0.500, inflow 

	
   	
  
(b) X/C = 0.531, pre-transition onset 

 
(d) X/C = 0.539, pre-transition onset 

	
   	
  
(e) X/C = 0.538, transition onset 

 
(f) X/C = 0.540, transition onset 

	
   	
  
(g) X/C = 0.542, post transition onset 

 
(g) X/C = 0.541, post transition onset 

Figure 9. Vortex-axial time-RMS velocity contours normalized by maximum value in plane. Left column: lowest 
Z-mode to Y-mode amplitude ratio; Right column: highest. 
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The results presented in this section indicate that further simulations with additional combinations of inflow 
amplitudes are necessary to determine the nature of interaction between the Y- and Z-mode fluctuations.  
Apparently, however, the interaction between Y- and Z-mode fluctuations is unlikely to be observed over a rather 
narrow range of initial amplitudes, and the isolated breakdown scenarios examined in Refs. 8 and 9 are more likely 
for an arbitrary combination of inflow amplitudes.   
 

V. Summary 
In this paper, previously reported computations of crossflow-induced transition over a realistic swept wing 

configuration were extended from the evolution of a single, Y or Z type secondary instability mode having the same 
spanwise wavelength as that of the stationary crossflow vortex to the combined evolution both Y and Z modes with 
the fundamental wavelength.  Specifically, DNS results for selected combinations of initial amplitudes were used to 
compare the mixed-mode transition simulation with analogous simulations involving each individual mode of 
secondary instability. For the initial amplitudes investigated in this paper, the Y modes are found to play an 
insignificant role during the onset of transition in spite of achieving rather large, O(5%), amplitudes of RMS 
velocity fluctuation prior to transition.  Analysis of the numerical simulations shows that this rather surprising 
finding can be attributed to the fact that the Y modes are concentrated near the top of the crossflow vortex and exert 
relatively small influence on the Z modes that reside closer to the surface and can lead to transition via nonlinear 
spreading that does not involve interactions with the Y mode. 

The subharmonic secondary modes are found to have lower growth rates as expected, and hence, are deemed 
relatively unimportant during the breakdown process for the configuration of interest.  However, if the receptivity 
characteristics are such that the initial amplitudes of the fundamental secondary modes are very low, then the 
subharmonic modes could possibly induce transition on their own because of their relatively significant growth 
potential to influence the nonlinear phase of the transition process.   
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