A Burning Rate Emulator (BRE) for Study in Microgravity

A. Markan, P.B. Sunderland, J.G. Quintiere*, J. DeRis², D.P. Stocker³

¹Dept. of Fire Protection Engineering, University of Maryland, College Park, MD 20742, USA
²retired, FM Global, Norwood, MA 02062, USA
³NASA Glenn Research Center, Cleveland, OH 44135, USA

Acknowledgements to
F. Takahashi⁴, P.V. Ferkul⁵

⁴Case Western Reserve University, Cleveland, OH 44106, USA
⁵Universities Space Research Assoc, NASA Glenn Research Center, Cleveland, OH 44135, USA

NASA GRC Award NNX10AD98G
Objective & proof of concept

Seek to emulate the steady burning conditions of condensed fuels by using a gas burner.
Method

Hypotheses: Burner matches properties

1. heat of gasification by flow rate and heat flux measurements
2. heat of combustion by a mixture of gaseous fuel and diluent
3. surface re-radiation by temperature measurement
4. smoke point by fuel - diluent mixture.
Tests: NASA 5.18 s

- About 53 tests Varying:
 - Diameter: 25, 50 mm
 - Fuel: CH₄, C₂H₄ w & wo N₂
 - Flow rate 3.5 to 12.7 g/m²s
 - Pressure 0.5 to 1 atm
 - Oxygen 21 to 30%
 - Fix heat of combustion
 - & smoke point
 - Obtain L and T_s

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Gas</th>
<th>Burning rate (g/m³·s)</th>
<th>X_{O2}</th>
<th>P (atm)</th>
<th>ΔH (kJ/g)</th>
<th>SP (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>○</td>
<td>100% CH₄</td>
<td>6.67</td>
<td>30%</td>
<td>1</td>
<td>49.6</td>
<td></td>
</tr>
<tr>
<td>○</td>
<td>100% CH₄</td>
<td>6.67</td>
<td>30%</td>
<td>1</td>
<td>49.6</td>
<td></td>
</tr>
<tr>
<td>○</td>
<td>100% CH₄</td>
<td>6.67</td>
<td>30%</td>
<td>1</td>
<td>49.6</td>
<td></td>
</tr>
<tr>
<td>○</td>
<td>100% CH₄</td>
<td>12.71</td>
<td>30%</td>
<td>1</td>
<td>49.6</td>
<td></td>
</tr>
<tr>
<td>○</td>
<td>100% CH₄</td>
<td>4.72</td>
<td>30%</td>
<td>1</td>
<td>49.6</td>
<td></td>
</tr>
<tr>
<td>○</td>
<td>100% CH₄</td>
<td>9.05</td>
<td>30%</td>
<td>1</td>
<td>49.6</td>
<td></td>
</tr>
<tr>
<td>●</td>
<td>100% C₂H₄</td>
<td>6.02</td>
<td>21%</td>
<td>1</td>
<td>41.5</td>
<td>120</td>
</tr>
<tr>
<td>●</td>
<td>100% C₂H₄</td>
<td>6.02</td>
<td>21%</td>
<td>1</td>
<td>41.5</td>
<td>120</td>
</tr>
<tr>
<td>●</td>
<td>100% C₂H₄</td>
<td>4.63</td>
<td>21%</td>
<td>1</td>
<td>41.5</td>
<td>120</td>
</tr>
<tr>
<td>●</td>
<td>100% C₂H₄</td>
<td>3.48</td>
<td>30%</td>
<td>1</td>
<td>41.5</td>
<td>NA</td>
</tr>
<tr>
<td>●</td>
<td>100% C₂H₄</td>
<td>3.48</td>
<td>30%</td>
<td>0.7</td>
<td>41.5</td>
<td>NA</td>
</tr>
<tr>
<td>▲</td>
<td>100% C₂H₄</td>
<td>3.48</td>
<td>26%</td>
<td>0.81</td>
<td>41.5</td>
<td>NA</td>
</tr>
<tr>
<td>▲</td>
<td>100% C₂H₄</td>
<td>3.48</td>
<td>26%</td>
<td>1</td>
<td>41.5</td>
<td>NA</td>
</tr>
<tr>
<td>▲</td>
<td>100% C₂H₄</td>
<td>3.48</td>
<td>30%</td>
<td>0.5</td>
<td>41.5</td>
<td>NA</td>
</tr>
<tr>
<td>⊕</td>
<td>50% C₂H₄</td>
<td>6.95</td>
<td>21%</td>
<td>1</td>
<td>20.8</td>
<td>240</td>
</tr>
<tr>
<td>⊕</td>
<td>50% C₂H₄</td>
<td>6.95</td>
<td>26%</td>
<td>1</td>
<td>20.8</td>
<td>NA</td>
</tr>
<tr>
<td>⊕</td>
<td>50% C₂H₄</td>
<td>6.95</td>
<td>26%</td>
<td>1</td>
<td>20.8</td>
<td>NA</td>
</tr>
<tr>
<td>⊕</td>
<td>50% C₂H₄</td>
<td>6.95</td>
<td>26%</td>
<td>0.81</td>
<td>20.8</td>
<td>NA</td>
</tr>
<tr>
<td>⊕</td>
<td>50% C₂H₄</td>
<td>9.26</td>
<td>21%</td>
<td>1</td>
<td>20.8</td>
<td>240</td>
</tr>
<tr>
<td>⊕</td>
<td>50% C₂H₄</td>
<td>9.26</td>
<td>26%</td>
<td>0.81</td>
<td>20.8</td>
<td>NA</td>
</tr>
</tbody>
</table>
Typical Results 25 mm

Ignition 0.5s
Before 0 g

Steady at End?
Test 92 - C_2H_4 - 50 mm - 30% O_2 - 0.7 atm – compared to C_2H_4 - 25 mm - 30% O_2 - 0.7 atm

25 mm heat flux $\sim 3 \text{ kW/m}^2$; 50 mm $\sim 7 \text{ kW/m}^2$

Think radiation from gases is increasing with diameter
Analysis

- BRE gives surface temperature and net heat flux
- Compute heat of gasification \(\dot{m}''L = \dot{q}_{net}'' \)
- Obtain “steady burning”?

Diffusive theory

- Heat flux
 \[
 \dot{q}'' D c_p / kL = \left(\frac{8}{\pi} \right) \ln \left(1 + \frac{Y_{ox,\infty}}{\Delta h_{c,ox}} \right)
 \]
- “Height”
 \[
 y_f = \left(\frac{\pi}{8} \right) B \ln \left[\frac{(1 + B) / (Y_{ox,\infty} / (Y_{F,o} \Delta h_c / \Delta h_{ox}) + 1)}{\ln (1 + B)} \right]^{\frac{1}{2}}
 \]

ASGSR 2015 Alexandria, VA
2-D theory H. Baum

- Conservation of Mass
 \[\nabla \cdot (\tilde{\rho} \tilde{u}) = 0 \]

- Conservation of Energy and Species
 \[\nabla \cdot (\tilde{\rho} \tilde{u} Z) - \nabla \cdot (\tilde{\rho} \tilde{D} \nabla Z) = 0 \]

- Potential flow and diffusivity
 \[\tilde{u} = \nabla \tilde{\phi} \quad (\tilde{\rho})^n \tilde{D} = (\tilde{\rho}_\infty)^n \tilde{D}_\infty \]

Same as 1-D for flat ellipse
But analytic solution for ellipsoidal flame!
Dimensionless Heat Flux

\[\frac{\dot{q}_{\text{net}} C_p D}{kL} \frac{\delta}{\pi \ln(1 + B)} \]

- \(k = 0.06599 \text{ W/m-K} \)
- \(C_p = 1.1674 \text{ J/g-K} \)
- for N\(_2\) at T = 1000 K

- 25 mm
- 50 mm

\[y = 0.7167 x (25 \text{ mm}) \]
\[y = 1.0337 x (50 \text{ mm}) \]
Dimensionless Flame Height

\[
\frac{y_f}{D} = \frac{\pi \ln[(1 + B)/(1 + \gamma)] B}{8 \left(\ln(1 + B)\right)^2}
\]
Mass Flux vs L
Radiation for 50 mm
Conclusions

- BRE gives efficient results in microgravity
- “Drop” tests show possible trend toward steady state
- A steady model correlates results over changes in fuel, pressure, oxygen, and flow rate
- Burning and heat flux depend on L, heat of gasification and D, diameter
- Flame size depends linear on D, and on L and fuel mass fraction in the BRE flow
- Both also depend on oxygen concentration, but not apparently on pressure (Pressure effects flame height, but not in theory)
Ignition/Extinction in 1g

PhD student from U of Lund
Future

- Explore Baum 2-D solution (& extinction)
- Compute gas radiation
- Add radiation (analytic and numerical)
- Explore 1-g BRE
- Calibrate NASA BRE burners
- Attempting new PhD student by NASA student grant