Gas Generators and Their Potential to Support Human-Scale HIADs

(Hypersonic Inflatable Aerodynamic Decelerators)

Introduction

As HIAD technology progresses from 3-m diameter experimental scale to as large as 20-m diameter for human Mars entry, the mass penalties of carrying compressed gas has led the HIAD team to research current state-of-the-art gas generator approaches. Summarized below are several technologies identified in this survey, along with some of the pros and cons with respect to supporting large-scale HIAD applications.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Pros</th>
<th>Cons</th>
</tr>
</thead>
</table>
| Sublimating Powders/Crystals | - Used as far back as Echo-1 (1960)
- Minimum support infrastructure
- Fairly light weight | - High inflation pressure of the HIAD leads to difficult solutions
- Slow sublimation limits failure mode protection
- Potential for early deployment due to packing irregularities | |
| Hybrid Gas Generators | - Storing gas as a liquid increases storage density
- Used to inflate some aircraft escape slides | - Risk of introducing liquid into inflatable
- Still carrying pressurized components
- Pressure vessel increases mass | |
| Solid Gas Generators | - Several gases available
- Tailorable output temperature
- No pressure during transit | - Concern about grain cracking as size increases
- Still have pressure vessel during deployment | |
| Metal Hydride/Membrane Storage | - No/low pressure during transit
- Scaling of the chemistry is well understood
- Release can be electrical or chemical initiated | - Gas Temperature near system limits
- Manufacture challenges with the hydrides (industrial scale) | |
| Re-purposing of Fluids | - Some chemicals endothermic (reduce insulation)
- Known technology | - Risk of induced liquid into inflatable
- Still carrying pressurized components
- Pressure vessel increases mass | |

2. Small metal hydride storage unit at SRNL, USA.

www.nasa.gov