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NASA Aeronautics: Strategic Thrusts
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CMC Research at NASA Glenn

• Material Development & Characterization

• CMC / EBC Durability Modeling & Validation

• Advanced Manufacturing Technologies
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CMC Development 
and Characterization
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Hybrid Process for Dense SiC / SiC Composites
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2700⁰F CMC Development and Characterization 

Objective: Develop durable 27000F CMC for turbine 

components
.

Approach 

• Identify optimum constituents and processing methods 

• Fabricate 1st generation 27000F CMC with (CVI+PIP) 
hybrid matrices and candidate 3D fiber architectures

• Characterize CMC properties and damage 
mechanisms under static and cyclic conditions for at 
least 300 hours at 2700oF 

• Fabricate 2nd generation 27000F CMC with optimized 
fiber architecture and constituents for component 
applications 

• Characterize mechanical properties and damage 
mechanisms of optimized Gen-2 CMC under static and 
cyclic conditions.

Accomplishments

• Demonstrated 20 ksi / 2700⁰F / 300 hours 
durability under creep, fatigue and combined 
(creep + fatigue) loading for CMC with hybrid 
matrix and Sylramic-iBN fibers 

• Identified optimal fiber architecture (3D 
Modified Angle Interlock) for Gen-2 CMC with 
hybrid matrix and Super Sylramic-iBN fibers 

• Demonstrated microstructural and cyclic 
stability of 2700⁰F EBC on 3D woven 

SiC/SiC Composites with (CVI+PIP) hybrid 
matrix at 2700⁰F for 300 hours 

Modified Angle Interlock

fiber architecture

Generation 1 CMC has >300hrs life at 27000F / 20 ksi 

Contact: Ramakrishna.T.Bhatt@nasa.gov

Near Term Goal:

20 ksi / 27000F

300 hours 

Long Term Goal:

30 ksi / 27000F 

1000 hours 
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Fiber Research for 2700oF SiC/SiC CMC

• Understand basic mechanisms

• Develop approaches for property 

improvement

• Develop analytical fiber and CMC 

models for time-temperature 

deformation and rupture behavior

Test and characterize key  properties of potential 2700oF SiC fibers

in order to: 

Improve fiber processing to obtain  

uniform microstructure & optimal properties
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Constituent Creep Rates for SiC/SiC Composites 
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• Above 2400⁰F, creep resistance of the SiC fibers is lower than that of the 

hybrid (CVI+PIP) SiC matrix, so long term durability of the CMC is controlled 

by matrix creep resistance  

• To achieve 1000-hour CMC durability at 27000F, an advanced SiC fiber should have 

a creep rate equal to that of the hybrid matrix 

• 1000-hour durability requires a CMC creep rate < 10-9/sec, and total creep < 0.4%.



National Aeronautics and Space Administration

www.nasa.gov

Advanced Matrix Compositions Characterized 

Compositions

Compositions

• Advanced CrMoSiGe/SiC/Si3N4 matrices with different 

self- healing additives have been investigated.

 Self-healing additives have resulted in improved K1C

values.

 High temperature fracture toughness 3X greater 

than monolithic SiC.

 Room temperature elastic moduli equal to 

monolithic Si3N4.
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CMC / EBC Durability Modeling 
& Validation 
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Time-to-failure vs applied stress 

for Hi-Nicalon fibers1
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Lo = 25 mm

matrix cracking stress

Time-Dependent Stress Rupture Strength Degradation 

in SiC / SiC Composites 

Contact: Roy.M.Sullivan@NASA.gov

Fiber slow crack growth model explains 

stress versus time-to-failure data 

in Hi-Nicalon SiC/SiC composites 2 

1 Gauthier and Lamon, J. Amer. Ceram. Soc., 92 [3] 702-709 (2009).

2 Sullivan Roy M., NASA TM-2015-218939.

Conclusion: Slow crack growth in fibers is the 

most significant time-dependent strength loss 

mechanism in Hi-Nicalon reinforced composites

at intermediate temperatures.
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Force equilibrium mechanics

at a matrix crack2: 
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BN interface oxidation in SiC/SiC composites
model development & validation

Objective: Determine interface oxidation mechanisms 

and model the mechanical-oxidation-creep interactions 

that affect  the strength and life of SiC/SiC CMCs.

Approach: Perform parallel and correlative experimental and 

numerical analysis studies.  Currently utilizing MI SiC/SiC CMC.

2O

Oxidation patterns in crack plane: 1 atm air @ 1000 °C 

for 29 hours, 115 MPa applied stress

Key Tasks

• Develop diffusion/oxidation model.

• Perform tests for model inputs.

• Perform stress rupture tests in oxidizing 

environment and characterize oxidation 

patterns on fracture surfaces.

• Develop failure model that incorporates 

effects of oxidation.

• Predict time to failure in various 

environments and applied loads.

oxidation model results
0° SiC

fiber tows
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SiC/SiC Crack Opening Measurements

RESULTS

• SEM provided the ability to observe and 

image cracks on the polished edge of 

the sample at high magnification.

• Following precracking at 25 ksi, images 

were captured at stress levels of 10, 15, 

20, 25, and 30 ksi.  

OBJECTIVE

• Crack opening displacements were needed to support GRC modeling of the oxidation of 

SiC/SiC CMCs at “intermediate” temperatures (815ºC). 

• University of Michigan researchers used a small tensile loading fixture in an SEM 

to measure crack opening in a melt infiltrated SiC/SiC composite
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BSAS coated CVI/SMI SiC/SiC at  ~8.5 MPa

Si Bond Coat?

BSAS + Mullite

BSAS

• 4-Point bend fixture was 

designed for use in SEM 

• Loads applied 

incrementally to 

characterize damage 

progression

• EBC damage initiated in 

BSAS layer at 25% of first 

matrix cracking stress

Composite

BSAS Coating

Tensile Surface

Si Bond Coat?

BSAS + Mullite

BSAS

Damage Progression in CMC/EBC Characterized

Contact: Martha.H.Jaskowiak@nasa.gov
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CMAS interactions with EBC materials characterized

Characterization of thermal and mechanical 

properties of CMAS glass provides 

fundamental knowledge that will help to 

mitigate damage and improve EBC durability

1 cm

Aircraft engine 

ingests sand 

on runway

Residual 

CMAS glass

Interaction 

Region

Y2Si2O7 substrate exposed 

to CMAS at 1200°C for 20h

Y2Si2O7 substrate

~13 µm

Contact: Valerie.L.Wiesner@nasa.gov

Approach: evaluate interactions between heat 

treated EBC substrates with CMAS glass pellets

• Candidate EBC materials evaluated include:

– Yttrium disilicate (Y2Si2O7)

– Hafnium silicate (HfSiO4)

– Ytterbium disilicate (Yb2Si2O7)

Progress in 2015:

• High-temperature tests showed SOA 

models overestimate CMAS viscosity 

• Y2Si2O7 EBC exposed to CMAS glass 

formed apatite (Ca2Y8(SiO4)6O2) phase 
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Advanced Manufacturing Technologies
for CMCs
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Evaluation of Advanced Joining Technology 

for a Turbine Vane Sub-element is in progress

17

Easier fabrication compared to a continuous 3-D CMC vane.

Utilize NASA GRC 

Pressureless 

Joining Methods.

CMC to CMC using REABond and SET Joining.

Contact: Michael.C.Halbig@nasa.gov
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An inkjet-like printing head moves across 

a bed of ceramic powder, depositing a 

liquid binding material in the shape of the 

object’s cross section

Advanced Manufacturing Processes were adapted 

for fabricating Ceramic Matrix Composites

Horizontal Dip-Spin CastingBinder Jet process

4. Pyrolysis and 

sintering

3. Machine2. Dry

1. Dip-spin casting with

thickness control blade

Enables fabrication of near-net shape 

ceramics with chopped fiber reinforcement 

for increased toughness and durability 
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Additive Manufacturing for Electric Motor Applications 

Initial focus is on axial flux motors with printed circuit stators

19

• Ability to co-print four separate materials on 

curved surfaces or build 3D structures. 

• Accurate motion control and micro-

dispensing volume control to 100 picoliters. 

• Ability to print a wide variety of ceramic 

pastes (structural and functional), electronic 

pastes, adhesives, solders, bio-materials. 

Electric Aircraft

• Greener technology than turbine engines: 

• Reduced CO2 emissions: batteries charged 

from environmentally friendly sources

• Extremely quiet operation

• High power density electric motors allow for:

• Larger pay loads and longer ranges.

• Reduced weight and volume.

Size comparison: radial 

and axial flux motors
Axial motor with a printed circuit stator NScrypt AM Machine

direct print micro-dispensing system
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NASA GRC Focus in 2016

CMC Development & Characterization

• Characterize mechanical properties and durability of “Generation 2” 

Hybrid-matrix CMC for 2700°F applications

• Optimize NASA “in-situ BN” fiber heat treatment process for improved 

creep resistance 

• Evaluate durability of 2700°F CMC / EBC system in component rig tests

CMC / EBC Durability Modeling & Validation

• Measure moisture effects on durability and failure modes of CMC/EBC 
system   

• Fabricate and test subelement configurations using 2400°F + joining 

techniques  

Additive Manufacturing

• Optimize AM processes for improved density, mechanical properties and 

durability of chopped-fiber CMC’s


