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Background
Rotating Detonation Engines (RDE’s) represent an Intriguing
Approach to Detonative Pressure Gain Combustion (PGC)

• 1000+ Hz. cycle frequency
• No ‘spark’ required
• No lossy DDT devices
• Compact

PGC: A periodic process, in a fixed volume, whereby gas expansion by heat release is 
constrained, causing a rise in stagnation pressure and allowing work extraction 
by expansion to the initial pressure.

Source: Schwer, AIAA 2011-581
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Problem Statement

• Semi-Ideal Means
− Mil. Spec. engine inlet
− Combustor (RDE) inlet is lossless
− Combustor inlet has no reverse flow (i.e. perfect valve)
− Engine exit nozzle is lossless (i.e. perfectly expanded)
− Adiabatic
− Inviscid
− Premixed
− Retains fundamental entropy sources associated with RDE’s

Consider a Semi-Ideal, Ram-Based, Stoichiometric Hydrogen Fueled 
RDE at 37,000 ft., Flying at Mach 1.37

(Note-Flight conditions are illustrative only) 

RDEInlet Nozzle
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Problem Statement

• RDE 21% above RJ
• RDE 22% below PDE

RDEInlet Nozzle
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Problem Statement

• 7-10% Disparity
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Problem Analysis
Primary Analysis Tool

Quasi-2-Dimensional Euler Solver With Sources
• Source Terms Model:

• Chemical Reaction
• Friction (not used here)
• Heat Transfer (not used here)

• 2 Species Reaction (reactant or product)
• Simplified Finite Rate Reaction
• High Resolution Numerical Scheme
• Coarse Numerical Grid (< 10,000 cells)
• Adopts Detonation Frame of Reference

• Time derivatives ultimately vanish and solution is steady
• Robust Boundary Conditions

• Sub or supersonic exhaust flow
• Optional isentropic exhaust throat
• Forward or reverse inlet flow with choking possible (not used here)
• Physics based inlet loss model from typical restriction (mostly not used here)

• Runs on a laptop
• Approximately 20 sec. per wave revolution

• Validated
• Compares well with other semi-idealized numerical results
• Compares well with experimental results
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Problem Analysis
Effects of Fill Mach Number On 1D PDE

• Algebraic 1D PDE Results Assumed 
Low Fill Mach Number

• As Fill Mach Increases Post 
Detonation Entropy Increases and 
Specific Impulse Decreases

• As Fill Mach Increases Predetonation
Pressure Drops

• Detonation Does Not Recover 
Pressure

• So Post-Detonation CJ Pressure 
Drops

• Less Availability for Thrust Production
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Problem Analysis
Effects of Fill Mach Number On RDE

• Fill Mach Number Tricky to Define
• Using axial Mach number just prior to 

detonation
• Axial Mach Number Is High
• Post-Detonation Entropy Is High
• Fill Mach and Entropy Follow Same 
Relationship as 1D PDE

CFD Results for RDE’s Suggest Fill Mach is Indeed the Culprit
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Accommodation Strategy
Add an Exit Throat

• Rate of Exhaust Affects Rate of Fill
• Well established from PDE efforts

• Lower Rate of Fill Yields Higher Pre-detonation Pressure, Higher Post-Detonation 
Pressure, Lower Entropy, Higher Specific Impulse

It Works! 9.4% Specific Impulse Increase 

Aexit/Aannulus=0.75
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Accommodation Strategy
More Restriction!

• Throat Sends Strong 
Waves Upstream

• Waves Affect Inflow
• Inflow Changes Affect 
Detonation Structure

• Detonation Changes 
Generate Additional 
Spurious Waves

• Waves Get Reflected
• Cascade Established

Unstable Behavior Results 

Aexit/Aannulus=0.70
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Accommodation Strategy
Inlet Restriction With Loss

• Inlet Restriction Creates Total Pressure Loss…
• But Damps Unstable Behavior Allowing Smaller Exit Restrictions…
• Ultimately Yielding Net Gain

10.3% Specific Impulse Increase

Aexit/Aannulus=0.70; Ain/Aannulus=0.75
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Concluding Remarks

• For an idealized, basic RDE configuration, the fill Mach 
number can be quite high under representative boundary 
conditions

• Through the same basic mechanism as the PDE, the high 
fill Mach limits performance as measured by net specific 
impulse

• The fill Mach can be reduced by adding a throat to the exit, 
thereby gaining as much as 9% net specific impulse

• Too much exit restriction yields unstable operation
• Adding a ‘lossy’ inlet restriction adds stability and allows for 

a 10% specific impulse improvement
• Experimental validation (or refutation) is justified
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