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Background ]

Rotating Detonation Engines (RDE’s) represent an Intriguing
Approach to Detonative Pressure Gain Combustion (PGC)

PGC: A periodic process, in a fixed volume, whereby gas expansion by heat release is

constrained, causing a rise in stagnation pressure and allowing work extraction

by expansion to the initial pressure.
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* 1000+ Hz. cycle frequency
* No ‘spark’ required
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Problem Statement

Consider a Semi-ldeal, Ram-Based, Stoichiometric Hydrogen Fueled
RDE at 37,000 ft., Flying at Mach 1.37
(Note-Flight conditions are illustrative only)

B nct RDE Nozzle

« Semi-ldeal Means
— Mil. Spec. engine inlet
— Combustor (RDE) inlet is lossless
— Combustor inlet has no reverse flow (i.e. perfect valve)
— Engine exit nozzle is lossless (i.e. perfectly expanded)
— Adiabatic
— Inviscid
— Premixed
— Retains fundamental entropy sources associated with RDE’s
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Problem Statement

Inlet RDE Nozzle

RDE Ramjet PDE

. RDE 21% above RJ ¢&
« RDE 22% below PDE ?
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Problem Statement

. 5000
(&)
Q
(7]
%ﬁ
= 4500
o
£
Q £
é 4000 :g
n 7
-— C
Z 2
3500
RDE RDEw/ RDEw/ PDENU PDE
KEu KEu-Sm
Contours of Entropy Relative to Algebraic PDE
highest entropy flow
0.2
>
> g
0.1 =

| 1 | 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X
« 7-10% Disparity ?
Where's All This Blue Coming From and What Can Be Done About it?
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Problem Analysis
Primary Analysis Tool

Quasi-2-Dimensional Euler Solver With Sources
* Source Terms Model:
» Chemical Reaction
* Friction (not used here)
» Heat Transfer (not used here)
« 2 Species Reaction (reactant or product)
» Simplified Finite Rate Reaction
* High Resolution Numerical Scheme
» Coarse Numerical Grid (< 10,000 cells)
» Adopts Detonation Frame of Reference
 Time derivatives ultimately vanish and solution is steady
* Robust Boundary Conditions
» Sub or supersonic exhaust flow
* Optional isentropic exhaust throat
« Forward or reverse inlet flow with choking possible (not used here)
* Physics based inlet loss model from typical restriction (mostly not used here)
* Runs on a laptop
» Approximately 20 sec. per wave revolution
*Validated
» Compares well with other semi-idealized numerical results
» Compares well with experimental results
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Problem Analysis @
Effects of Fill Mach Number On 1D PDE |

* Algebraic 1D PDE Results Assumed  8° | % 5000
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Analytical Results for 1D PDE’s Say Fill Mach is the Culprit

ASM 2016 www.nasa.gov s




National Aeronautics and Space Administration

Problem Analysis
Effects of Fill Mach Number On RDE

* Fill Mach Number Tricky to Define

0.16 3
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* Axial Mach Number |s High 01r
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CFD Results for RDE'’s Suggest Fill Mach is Indeed the Culprit
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Accommodation Strategy @
Add an Exit Throat

« Rate of Exhaust Affects Rate of Fill
» Well established from PDE efforts
« Lower Rate of Fill Yields Higher Pre-detonation Pressure, Higher Post-Detonation
Pressure, Lower Entropy, Higher Specific Impulse
At Asnuins=0.75
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It Works! 9.4% Specific Impulse Increase
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* Throat Sends Strong
Waves Upstream

» Waves Affect Inflow

* Inflow Changes Affect
Detonation Structure

* Detonation Changes
Generate Additional
Spurious Waves

* Waves Get Reflected

» Cascade Established

Accommodation Strategy
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Unstable Behavior Results

ASM 2016

WWW.nasa.gov 11



National Aeronautics and Space Administration

Accommodation Strategy
Inlet Restriction With Loss
* |Inlet Restriction Creates Total Pressure Loss...

« But Damps Unstable Behavior Allowing Smaller Exit Restrictions...
« Ultimately Yielding Net Gain
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10.3% Specific Impulse Increase

ASM 2016 Www.nasa.gov 12



National Aeronautics and Space Administration

Concluding Remarks

* For an idealized, basic RDE configuration, the fill Mach
number can be quite high under representative boundary
conditions

* Through the same basic mechanism as the PDE, the high
fill Mach limits performance as measured by net specific
impulse

« The fill Mach can be reduced by adding a throat to the exit,
thereby gaining as much as 9% net specific impulse

» Too much exit restriction yields unstable operation

« Adding a ‘lossy’ inlet restriction adds stability and allows for
a 10% specific impulse improvement

« Experimental validation (or refutation) is justified
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