Meanline Analysis of Turbines with Choked Flow in the Object-Oriented Turbomachinery Analysis Code

Eric S. Hendricks

NASA Glenn Research Center

AIAA SciTech 2016
San Diego, CA
Conceptual design process focuses on a rapid analysis of design alternatives and relies on lower-fidelity analysis tools.

Turbomachinery analysis commonly uses meanline and streamline simulation tools.
The Object-Oriented Turbomachinery Analysis Code (OTAC)

- Developed by NASA GRC using the Numerical Propulsion System Simulation (NPSS) code
- Analysis capabilities:
 - Compressor and turbine components
 - Axial and centrifugal designs
 - Meanline and streamline models
 - User defined loss models
- Results for several compressor and turbine models validated against results from similar analysis codes (Jones, ISABE2015-20015)
- Limitation of the code was identified when analyzing turbines with flow near or at the limiting choked mass flow rate

Study Objective

Enhance the analysis capabilities of OTAC by enabling analysis of choked flow in turbine meanline models
Presentation Outline

1. Overview of OTAC Models
2. Relevant Choked Flow Characteristics
3. Improvements to OTAC
4. Results
5. Conclusions
Presentation Outline

1 Overview of OTAC Models

2 Relevant Choked Flow Characteristics

3 Improvements to OTAC

4 Results

5 Conclusions
Six new objects created in NPSS for OTAC:

- OTAC Start
- Blade Row
- Blade Segment
- Transition Section
- Expander
- Reducer

Objects are combined to form turbomachinery models
OTAC Blade Segment Equations

1. \(\dot{m}_{\text{in}} = \dot{m}_{\text{out}} \)
2. \(h_{t,\text{out}} - h_{t,\text{in}} = \omega (r_{\text{out}} V_{\theta,\text{out}} - r_{\text{in}} V_{\theta,\text{in}}) \)
3. \(P_{t,\text{out}} = P_{t,\text{out,ideal}} - f_{\text{loss}} (\text{args}) \)
4. \(\beta_{\text{out}} = \beta_{m,\text{out}} + \delta \)
5. \(r_{\text{out}} = r_{m,\text{out}} \)
6. \(A_{\text{out}} = A_{m,\text{out}} \)
7. \(\phi_{\text{out}} = \phi_{m,\text{out}} \)
Typical OTAC Model Inputs and Solver Setup

Case Inputs
- Inlet Total Pressure
- Inlet Total Temperature
- Inlet Mass Flow Rate
- Inlet Flow Angle
- Shaft Speed

Top-Level Solver

<table>
<thead>
<tr>
<th>Independents</th>
<th>Dependents</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>None</td>
</tr>
</tbody>
</table>

Vane Blade Row Solver

<table>
<thead>
<tr>
<th>Independents</th>
<th>Dependents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exit Mach</td>
<td>Machine Exit Area</td>
</tr>
<tr>
<td>Exit Flow Angle</td>
<td>Target Exit Flow Angle</td>
</tr>
<tr>
<td>Pressure Ratio</td>
<td>Exit Pressure from Losses</td>
</tr>
<tr>
<td>Exit Total Enthalpy</td>
<td>Euler Equation</td>
</tr>
<tr>
<td>Exit Mean Radius</td>
<td>Machine Exit Mean Radius</td>
</tr>
</tbody>
</table>

Rotor Blade Row Solver

<table>
<thead>
<tr>
<th>Independents</th>
<th>Dependents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exit Mach</td>
<td>Machine Exit Area</td>
</tr>
<tr>
<td>Exit Flow Angle</td>
<td>Target Exit Flow Angle</td>
</tr>
<tr>
<td>Pressure Ratio</td>
<td>Exit Pressure from Losses</td>
</tr>
<tr>
<td>Exit Total Enthalpy</td>
<td>Euler Equation</td>
</tr>
<tr>
<td>Exit Mean Radius</td>
<td>Machine Exit Mean Radius</td>
</tr>
</tbody>
</table>
1 Overview of OTAC Models
2 Relevant Choked Flow Characteristics
3 Improvements to OTAC
4 Results
5 Conclusions
Supersonic Flow Characteristics

Unchoked Flow
Flow angle matches blade metal angle plus deviation

Choked Flow
Flow angle deviates from blade to match exit static pressure

Region of Prandtl-Meyer Expansion and Shock Waves

Throat
Mach-Area Relationship as a Function of Flow Angle

\[
A/A^* = \begin{cases}
\alpha = 0^\circ & 0 \\
\alpha = 15^\circ & 0.5 \\
\alpha = 30^\circ & 1.0 \\
\alpha = 45^\circ & 1.5 \\
\alpha = 60^\circ & 2.0
\end{cases}
\]

\[
\text{Mach Number}
\]

\[
\text{Figure: Mach-Area Relationship as a Function of Flow Angle}
\]
Presentation Outline

1. Overview of OTAC Models
2. Relevant Choked Flow Characteristics
3. Improvements to OTAC
4. Results
5. Conclusions
Three Improvements Required for Turbine Meanline Models

1. Add calculations for throat area and choked flow constraint to each blade row
2. Revise case inputs to define a unique solution
3. Revise the model solver setup to enable application of the flow constraint, determine the proper exit flow angle and change the case inputs
Calculations for Throat Area and Choked Flow Constraint in Each Blade Row

1. Calculate the critical pressure ratio and actual pressure ratio

\[PR_{cr} = \frac{P_{t,rel,in}}{P_{s,th,M=1.0}} \quad PR = \frac{P_{t,rel,in}}{P_{s,out}} \]

2. Determine throat properties
 - Choked flow \((PR \geq PR_{cr})\): throat properties and area determined from a sonic Mach number
 - Unchoked flow \((PR < PR_{cr})\): throat properties and area determined based on the exit static pressure

3. If model is in design mode, throat area is saved for off-design analysis

4. Blade row throat flow constraint equation compares actual flow per throat area to the flow per area required for choked conditions

\[\frac{\dot{m}}{A_{cr}} \leq \frac{\dot{m}}{A_{th}} \]
Revisions to Case Inputs

- Default OTAC model setup had mass flow as a case input producing three possible results:
 - Mass flow rate is below choked value producing a unique solution
 - Mass flow rate matches choked value producing an infinite number of solutions
 - Mass flow rate is above choked value producing no feasible solutions
- Specifying the turbine exit static pressure as a case input provides a unique solution for all flow regimes
 - Unchoked case: exit static pressure sets mass flow rate
 - Choked case: exit static pressure sets exit flow angle from choked blade row
Revisions to Model Solver Setup

- Attach flow constraints computed for each blade row to the flow angle dependent (Eq. 4) using feature of NPSS Newton solver
- Move independents and dependents from each blade row solver to the top-level solver
 - Mach number independent
 - Exit flow angle independent
 - Exit area dependent
 - Target flow angle dependent (including flow constraint)
- Add mass flow rate as an independent and exit static pressure as a dependent to the top-level solver
Revised OTAC Model Inputs and Solver Setup

<table>
<thead>
<tr>
<th>Case Inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inlet Total Pressure</td>
</tr>
<tr>
<td>Inlet Total Temperature</td>
</tr>
<tr>
<td>Exit Static Pressure</td>
</tr>
<tr>
<td>Inlet Flow Angle</td>
</tr>
<tr>
<td>Shaft Speed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vane Blade Row Solver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independents</td>
</tr>
<tr>
<td>Pressure Ratio</td>
</tr>
<tr>
<td>Exit Total Enthalpy</td>
</tr>
<tr>
<td>Exit Mean Radius</td>
</tr>
<tr>
<td>Dependents</td>
</tr>
<tr>
<td>Exit Pressure from Losses</td>
</tr>
<tr>
<td>Euler Equation</td>
</tr>
<tr>
<td>Machine Exit Mean Radius</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rotor Blade Row Solver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independents</td>
</tr>
<tr>
<td>Pressure Ratio</td>
</tr>
<tr>
<td>Exit Total Enthalpy</td>
</tr>
<tr>
<td>Exit Mean Radius</td>
</tr>
<tr>
<td>Dependents</td>
</tr>
<tr>
<td>Exit Pressure from Losses</td>
</tr>
<tr>
<td>Euler Equation</td>
</tr>
<tr>
<td>Machine Exit Mean Radius</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Top-Level Solver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independents</td>
</tr>
<tr>
<td>Inlet Mass Flow Rate</td>
</tr>
<tr>
<td>Vane Exit Mach Number</td>
</tr>
<tr>
<td>Vane Exit Flow Angle</td>
</tr>
<tr>
<td>Rotor Exit Mach Number</td>
</tr>
<tr>
<td>Rotor Exit Flow Angle</td>
</tr>
<tr>
<td>Dependents</td>
</tr>
<tr>
<td>Exit Static Pressure</td>
</tr>
<tr>
<td>Vane Target Exit Flow Angle*</td>
</tr>
<tr>
<td>Vane Machine Exit Area</td>
</tr>
<tr>
<td>Rotor Target Exit Flow Angle+</td>
</tr>
<tr>
<td>Rotor Machine Exit Area</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vane Allowable Mass Flow Rate*</td>
</tr>
<tr>
<td>Rotor Allowable Mass Flow Rate+</td>
</tr>
</tbody>
</table>
Presentation Outline

1 Overview of OTAC Models
2 Relevant Choked Flow Characteristics
3 Improvements to OTAC
4 Results
5 Conclusions
Several single-stage and multi-stage turbines were modeled using the new method for all cases (subsonic and supersonic).

Results shown in the form of turbine performance maps with corrected flow and efficiency as functions of pressure ratio and percent corrected speed.

All models use the Kacker-Okapuu loss correlations with incidence losses from Moustapha, Kacker and Tremblay.
Single-Stage Turbine with Choking in Vane
Experimental Results for a Single-Stage Turbine with Choking in Vane

Szanca and Schum, NASA-SP-290
Single-Stage Turbine with Choking in Rotor
Experimental Results for a Single-Stage Turbine with Choking in Rotor

Szanca and Schum, NASA-SP-290
Single-Stage Turbine with Choking Transition

Corrected Flow, lbm/sec

Pressure Ratio

Efficiency

Corrected Flow, lbm/sec

Pressure Ratio

Corrected Flow, lbm/sec

Pressure Ratio
Four-Stage Turbine

![Graph showing corrected flow and efficiency vs pressure ratio for different corrected flows and efficiencies.](image)
Presentation Outline

1. Overview of OTAC Models
2. Relevant Choked Flow Characteristics
3. Improvements to OTAC
4. Results
5. Conclusions
Summary and Future Work

- Improvements were made to the Object-Oriented Turbomachinery Analysis Code (OTAC) to enable analysis of meanline turbine models with choked flow
 - Adds calculations for throat area and choked flow constraint
 - Modifies analysis case inputs to include exit static pressure
 - Revises the internal solver setup
- Maps produced with new method exhibit characteristics matching those found in experimental results
- Areas for future work:
 - Extending this method for application to streamline turbine models
 - Developing a similar method for capturing choked flow in compressors