Zero Boil-Off Tank (ZBOT) Experiment

Joint CSA/ESA/JAXA/NASA Increments 47 and 48 Science Symposium

19 – 21 January 2016

John McQuillen
ZBOT Project Scientist
ZBOT Team Contacts

SCIENCE

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Affiliation</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Mohammad Kassemi</td>
<td>Principal Investigator</td>
<td>Case Western Reserve University</td>
<td>mohammad.kassemi@nasa.gov</td>
</tr>
<tr>
<td>Dr. David Chato</td>
<td>Co-Principal Investigator</td>
<td>NASA</td>
<td>david.j.chato@nasa.gov</td>
</tr>
<tr>
<td>Sonya Hylton</td>
<td>Research Scientist</td>
<td>Apogee Engineering, LLC</td>
<td>sonya.l.hylton@nasa.gov</td>
</tr>
<tr>
<td>Dr. Olga Kartuzova</td>
<td>Research Scientist</td>
<td>Apogee Engineering, LLC</td>
<td>olga.kartuzova@nasa.gov</td>
</tr>
<tr>
<td>John McQuillen</td>
<td>Project Scientist</td>
<td>NASA</td>
<td>John.b.mcquillen@nasa.gov</td>
</tr>
</tbody>
</table>

MANAGEMENT

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
<th>Affiliation</th>
<th>Email</th>
</tr>
</thead>
<tbody>
<tr>
<td>William Sheredy</td>
<td>Project Manager</td>
<td>NASA</td>
<td>william.a.sheredy@nasa.gov</td>
</tr>
<tr>
<td>Bart Gruber</td>
<td>Project Lead</td>
<td>Zin Technologies, Inc.</td>
<td>gruberb@zin-tech.com</td>
</tr>
</tbody>
</table>
ZBOT Project Team

SCIENCE AND MANAGEMENT
- Bill Sheredy – NASA GRC PM
- Mohammad Kassemi – PI, CWRU
- David Chato - Co-Principal Investigator, NASA
- John McQuillen – Project Scientist, NASA
- Sonya Hylton – Research Scientist, Apogee
- Olga Kartuzova – Research Scientist, Apogee
- Bart Gruber – Project Manager, ZIN

ENGINEERING
- Bernie Bolte – Electrical Engineer, ZIN
- Robert Brock – Software Lead, ZIN
- Kimesha Calaway – Systems/Integration, ZIN
- Kevin Dendorfer – Electrical Technician, ZIN
- Jeff Eggers – Software Engineer, ZIN
- Andrew Kawecki – Mechanical Technician, ZIN
- Alex Kieckhafer – Thermal Engineer, ZIN
- Kevin Magee – Fluids Engineer, ZIN
- John Morrison – Software Engineer
- Jim Ogrin – Mechanical Lead, ZIN
- William Pachinger – Electrical Engineer, ZIN
- Jim Paskert – Manufacturing Engineer, ZIN
- Joseph Samrani – Electrical Lead, ZIN
- Chris Werner – Structural Engineer, ZIN
- Michel Kahwaji Janho – Chemical Engineer, ZIN

SAFETY and MISSION ASSURANCE
- Alex Beltram– RM Facilitator, ZIN
- Brian Loucks– Quality Oversight, ARES
- Nechelle Grant - Risk Management, ARES
- Rick Plastow– Software QA, Bastion
- Chris Bodziooney– Safety Engineer, ZIN
- Darryl Seeley – Quality Assurance, ZIN
Science Background

NASA’s Cryogenic Fluid Management Challenges

• Reliable cryogenic storage for use in propellant systems is essential to meeting NASA’s future exploration goals.
• Heat leaks from surroundings lead to cryogen boil-off and excessive tank pressures.
• Tank is vented to reduce pressure, but also results in loss of cryogenic fluid.
• Predicting boil-off and self-pressurization rates is important to identify both active and passive techniques to minimize these losses.
Significance of Cryogenic Research: Mars Mission Example

- Physical sciences research on ISS provides the knowledge base for designing systems, ISS provides a platform to validate technologies for inclusion in flagship missions.

Notes:
- Approximate results only.
- Further assessments required.
- Results are cumulative and thus dependent on combinations/sequences of technologies applied
- The change between points shows the relative mass savings for that particular technology
- RED Text areas of Physical Science Impact

Graph Details:
- Normalized Mass Savings
- Improved Cryogenic Boil-off
- Cargo Aerocapture at Mars
- Advanced Propulsion
- Closed-Loop Life Support
- ISRU Propellants
- Nuclear Surface Power
- Maintenance & Spares
- Advanced Avionics
- DRA 5.0 Reference
1. Develop a small-scale simulant-fluid experiment for both preliminary ground-based testing and subsequent ISS flight experiments to obtain valuable microgravity empirical data for tank pressure control design and archival science data for model validation.

2. Build a science base for future space storage tank engineering efforts by elucidating the roles of the various interacting transport and phase change phenomena that impact tank pressurization and pressure control in variable gravity through systematic 1g and microgravity scientific investigation.

3. Develop, validate, and verify two-phase CFD models for tank pressure control that can be used to aid the future scale-up tank design.

4. Demonstrate the feasibility of Zero-Boil-Off (ZBO) pressure control schemes for microgravity and variable gravity applications by examining the effect of forced mixing of the bulk liquid on destratification and pressure reduction in a ventless Dewar.

ZBOT Science Objectives

1G Jet-Mixing Pressure Control: Simulation & Experimental Validation

Different Trends Predicted for Microgravity Pressure Control
ZBOT Measurement Approach

- Transparent test tank accommodates the simulant fluid (perfluoro-normal-pentane - C$_5$F$_{12}$), mixing nozzle, heaters, and sensors.
- Thermal conditions of the tank and fluid are controlled: The test tank is isolated inside a vacuum jacket by insulating supports.
- Resistance Temperature Detectors (RTDs) and pressure transducers provide temperatures and pressures to assess the thermodynamic state of the test fluid.
- Fluid Support Unit provides flow and fine thermal conditioning of fluid.
- Fluid Reservoir provides fluid storage and the ability to change the fill level in the tank per the test matrix.
ZBOT in the MSG Engineering Unit
(at NASA MSFC)

Data Acquisition and Control Unit (DACU)
Fluid Reservoir
Thermal Control Unit (TCU)
Cold Plate Package (CPP)
Camera Package Mounting Location
SAMS Head Mounting Location
Illumination Package
Test Section (14.0”W x 22.5”H x 14.8”D)
Fluid Support Unit (FSU)

Not Shown: Particle Injector and MSG Window.
Tank Volume: 0.83 L
Tank Diameter: 10 cm
Tank Height: 20 cm.

Ability to have localized and global heating.
ZBOT Operational Overview

ZBOT Operational Scheme:
1. Adjust tank fill level as necessary.
2. Thoroughly mix tank contents to achieve initial uniform temperature distribution in liquid.
3. Heat tank
 1. Use either tank wall heaters or radiate from vacuum jacket.
 2. Measure pressure and temperature rise.
4. Inject measured flow of controlled liquid temperature into tank.
 1. Measure pressure and temperature changes.
 2. Visualize jet penetration into ullage bubble.
5. Repeat as necessary (66 test points).

Technology Demonstration of Particle Imaging Velocimetry:
6. Conduct tests after completing test matrix at 90% fill level.
7. Inject particles as necessary.
8. Repeat steps 2 – 5 but visualize particle flow patterns in steps 3 & 4 (32 test points).
Duration of microgravity test conditions:

- Permits well-defined initial conditions to be established for each test run.
 - Uniform Temperature
 - Quiescent
- Lack of buoyancy-driven convection establishes a fluid stratification that is significantly different than in a terrestrial environment.
- Significant curvature of ullage bubble in reduced gravity cannot be established in normal gravity environment.
- Bubble position within tank can be influenced by both liquid jet and Marangoni flows.
Key Questions and Impact on Advancing the Field

- How much natural mixing (buoyancy vs. surface tension-driven) will take place in a given tank during operation at various gravitational levels?
- How much forced mixing is needed to thermally de-stratify the tanks without active cooling?
- Under what conditions will it be necessary to augment the thermal destratification through active cooling?
- How effectively do mixing-only and/or mixing-with-active-cooling decrease the pressure reduction times?

Need: reliable engineering correlations for mixing, destratification, and pressure reduction times as functions of relevant tank parameters such as heat leak rates, mixing flow rates, and fill levels

Application: sizing of the pumps, determining forced mixing modes, possible placement of flow control structures, and sizing and implementation of the active cooling mechanisms (TVS, Cryocooler, etc.)
Benefits/Spin-off Applications

• Space:
 – Reduced propellant launch mass (cost) and decreased risks for future space missions by aiding the development of dynamic pressure control schemes for long-term storage of cryogenic fluids.
 – Increased design reliability by providing archival data for benchmarking and improving computational fluid dynamic models used by the cryogenic fluid management community and aerospace companies for future tank designs.

• Earth Benefit
 – Advances the state-of-the-art knowledge in cryogenic fluid management and two-phase flow and heat transfer.
Backup Charts
Perfluoro-n-Pentane (PnP, or C₅F₁₂)
- High purity (99.7% straight-chained n-isomer).
- Non-flammable, non-toxic, refrigerant/cleaning fluid.

Physical properties
- Boiling Point = 29°C @ 1 atm
- Vapor Pressure = 12.5 psia @ 25°C
- Liquid Density ~ 1.6 g/cm³
- Liquid Viscosity ~ 0.6 cP
- Surface Tension ~ 9 dynes/cm
- ΔHᵥap ~ 90J/g
- Liquid Specific Heat ~ 1.09 J/g°C
- Liquid Thermal Conductivity ~ 0.056 W/m°C

Benefits:
- Relatively volatile at room temperature
- Tox 0 – Approved by JSC toxicology and MSFC ECLSS groups
ZBOT-1 Measurements & Data

Type of Test vs Method & Mode

<table>
<thead>
<tr>
<th>Type of Test</th>
<th>Method & Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressurization</td>
<td>Heater Strip</td>
</tr>
<tr>
<td></td>
<td>Vacuum Jacket Heating</td>
</tr>
<tr>
<td></td>
<td>Heater and Vacuum Jacket</td>
</tr>
<tr>
<td>Mixing Only</td>
<td>Uniform Temperature</td>
</tr>
<tr>
<td></td>
<td>After Self-Pressurization</td>
</tr>
<tr>
<td>Subcooled Mixing</td>
<td>Uniform Temperature</td>
</tr>
<tr>
<td></td>
<td>After Self-Pressurization</td>
</tr>
</tbody>
</table>

Input Variables (Tolerances)

<table>
<thead>
<tr>
<th>Input Variables</th>
<th>Tolerances</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heater Power</td>
<td>(w/ in 5 mW RMS)</td>
</tr>
<tr>
<td>Vacuum Jacket Offset</td>
<td>(+/- 0.2°C)</td>
</tr>
<tr>
<td>Fill Level</td>
<td>(70% +/- 3%, 80% +/- 3%, 90% -3%)</td>
</tr>
<tr>
<td>Jet Temperature</td>
<td>(+/- 0.25°C)</td>
</tr>
<tr>
<td>Jet Velocity/Flow rate</td>
<td>(10% of reading)</td>
</tr>
</tbody>
</table>

Outputs as Time Evolution

- Pressure
- Fluid Temperature (6 locations)
- Wall Temperature (17 locations)
- Jacket Temperature (21 locations)
- Jet Penetration Depth
- DPIV Velocity/Flow Structures
ZBOT Simplified Fluids Schematic
ZBOT Flight Fluids System Schematic