Additive Manufacturing and Characterization of Polylactic Acid (PLA) Composites Containing Metal Reinforcements

Lily Kuentz1, Anton Salem2, M. Singh3, M.C. Halbig4, J.A. Salem4

1Lake Ridge Academy, North Ridgeville, OH 44039
2Hawken School, Gates Mill, OH 44040
3Ohio Aerospace Institute, Cleveland, OH 44142
4NASA Glenn Research Center, Cleveland, OH 44135
Additive Manufacturing

• 3D printing
 – 3D CAD files are sliced
 – Filament is heated and extruded
3D Printing Materials

• Main 3D printer filaments
 – PLA
 – ABS

• Composite materials
 – Contain metal powders
 – Various fibers
Polylactic Acid (PLA)

• **Benefits**
 – Environmentally friendly
 – Does not release toxic fumes/safe for people

• **Disadvantages**
 – Does not last as long as other plastics.
 – Not as tough as ABS, based on fracture toughness testing
Applications of Polylactic Acid

• Films
 – Food packaging
 – Plastic bags

• Fibers
 – Upholstery
 – Disposable garments

• Biomedical applications
Objectives

Determine the properties of the new PLA composite materials

- Microscopy
- Tribology
- Tensile Strength
- Fracture Toughness
- Thermogravimetric analysis
- Differential Scanning Calorimetry

Compare the properties of the PLA with the PLA composites

- Are the PLA composites an improvement on the plain PLA materials?
- In what ways are these PLA composite materials an improvement?
Materials Used in Present Study

- PLA (Polylactic acid)
- Bronze fill PLA
- Copper fill PLA
- Magnetic Iron PLA
- Stainless Steel PLA
3-D Printed Materials

- The test samples were printed at several different layer heights seen below:
 - Tensile bars - 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm
 - Wear test samples - 0.1 mm, 0.2 mm, 0.3 mm, 0.4 mm
 - Fracture toughness bars - 0.1 mm, 0.3 mm
 - Microscopy samples - 0.1 mm, 0.3 mm

- Three samples per condition

ASTM D638

ASTM D5045
Macrostructure

- **Print resolution**
 - Prints of different layer heights exhibit different structures. Different mechanical properties?
Density

- **Metal Composite PLA vs. Pure PLA**
 - The metal filled materials had much higher densities than the pure PLA; correlate to metal mass content.
Thermogravimetric Analysis

<table>
<thead>
<tr>
<th>Filament</th>
<th>Metal Weight Percentage</th>
<th>Metal Volume Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bronzefill PLA</td>
<td>80.35%</td>
<td>36.02%</td>
</tr>
<tr>
<td>Copperfill PLA</td>
<td>80.57%</td>
<td>36.41%</td>
</tr>
<tr>
<td>Stainless Steel PLA</td>
<td>58.87%</td>
<td>18.09%</td>
</tr>
<tr>
<td>Magnetic Iron PLA</td>
<td>48.33%</td>
<td>11.05%</td>
</tr>
</tbody>
</table>
Thermogravimetric Analysis

TGA Tungsten N2

Loss of PLA

Oxidation weight gain

TGA GMASS Tungsten air
Microstructure

- Spheroidal Cu and bronze particles
- Deformed stainless and iron particles; poor dispersion!
Tensile Data

- PLA shows no layer height effect:
Tensile Data

• PLA shows the greatest strength:

![Graph showing tensile data for PLA, Metal, Composite Systems for layer height of 0.3mm.]

- Stress (MPa) vs. Axial Strain (in/in)

- PLA
- Stainless (18%)
- Magnetic Iron (11%)
- Copper and Brass (36%)

• As the concentration of metal in the filament increases, the strength decreases.
Tensile Data

- Metal filled PLA show an effect of layer height:
 - Lower strength and strain to failure.
Young’s Modulus

- Young’s modulus follows the V% of metal - porosity.
- Still stiffer than premium ABS.
- Poisson’s ratio was ~0.33.
Fracture Toughness

- Generally, the fracture toughness follows the V% of metal.
- PLA has greater toughness than ABS, but metal additions can lower significantly (50% for Cu).
Fracture Surfaces

• Do we have pictures?
Tribology

- Friction Coefficient of metal filled PLA:

 - The metal composite materials generally exhibit a higher coefficient of friction than pure PLA.
 - Higher layer height exhibits lower friction.

Related talk to be given on wear etc.
Conclusions

- PLA exhibits the greatest strength, with no dependence on layer height.
- Metal filled PLA is stiffer but weaker than unfilled; Good strain to failure is usually exhibited.
- SS filled PLA exhibits lower strain to failure – irregular powder and higher % fill. Bonding? Distribution? Surface finish? Fractography!
- As the metal volume percentage increases, the porosity increases, and lower strength is exhibited.
- Young’s Modulus generally increase as the V% of metal increases.
- Fracture toughness decreases as metal content increases.
- Higher coefficient of friction is exhibited by metal filled PLA’s.
- Metal powder act as a weak interface thereby lowering strength and toughness.
Future Work

• Continuing to process tests, and analyze these metal filled PLA materials.

• Characterization of new filaments.