Development Status and Performance Comparisons of Environmental Barrier Coating Systems for SiC/SiC Ceramic Matrix Composites

Dongming Zhu and Bryan Harder

Environmental Effects and Coatings Branch
Materials and Structures Division
NASA John H. Glenn Research Center
Cleveland, Ohio 44135, USA

40th International Conference and Expo on Advanced Ceramics and Composites
January 24-29, 2016
Daytona Beach, Florida
Light-Weight SiC/SiC Ceramic Matrix Composite (CMC) – Environmental Barrier Coating (EBC) Development

— Enabling next generation turbine engine hot-section technology: increased materials temperature capability and improved future engine performance

— EBCs are critical to long-term environmental durability and life of Si-based ceramic engine components

Metal components with TBCs
- Combustor
- Vane
- Blade

Monolithic/Hybrid Ceramic Nozzles/Blades

Light-weight SiC/SiC CMC components
NASA Environmental Barrier Coating System Development – For Turbine Engines

- Emphasize temperature capability, performance and durability for next generation for next generation vehicle airframe or engine systems
- Increase Technology Readiness Levels for component system demonstrations

<table>
<thead>
<tr>
<th></th>
<th>Gas</th>
<th>TBC</th>
<th>Bond coat</th>
<th>Metal blade</th>
<th>Gas</th>
<th>TBC</th>
<th>Bond coat</th>
<th>Metal blade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline metal temperature</td>
<td>2200°F TBCs</td>
<td>Tsurface</td>
<td>300°F increase</td>
<td>2500°F TBCs</td>
<td>3200°F (T41)</td>
<td>2700-3000°F EBCs</td>
<td>Tsurface</td>
<td>200-500°F increase</td>
</tr>
<tr>
<td>Current metal turbine airfoil system</td>
<td>Current metal turbine airfoil system 2500°F TBCs</td>
<td>State of the art metal turbine airfoil system</td>
<td>2700-3000°F CMC turbine airfoil systems</td>
<td>2400°F CMCs</td>
<td>2700°F CMCs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fundamental Recession Issues of CMCs and EBCs

Recession rate = constant $\times V^{1/2} \frac{P(H_2O)^2}{(P_{total})^{1/2}}$

$\text{SiO}_2 + 2H_2O(g) = \text{Si(OH)}_4(g)$

Combustion gas

Cooling air

Temperature, °C

SiC/SiC under high velocity

BSAS Baseline

Specific weight change, mg/cm²-h

1/T, K⁻¹

Supersonics EBC stability development goal - 2005
Outline

— Environmental barrier coating systems: design approach for stability

— Next generation environmental barrier coating systems for CMC airfoils and combustors
 • NASA coating technologies – advanced composition and system development
 — Fundamental research emphasis in understanding degradation, property evaluation, and performance modeling
 — Multi-component, multi-layer and composite systems
 • EBC processing: plasma spray, electron beam-physical vapor deposition and plasma spray-physical vapor deposition approaches
 • Advanced testing methodologies and simulated engine heat flux and stress testing
 — Laser high heat flux test rig and coating thermal conductivity
 — High temperature durability tests

— Summary and Conclusions
Advanced Environmental Barrier Coating and Architecture Development

— High temperature and environmental stability
— Lower thermal conductivity
— Balance designs of low thermal expansion, high strength and high strain tolerance
— High toughness
— Excellent resistance to thermal-mechanical loading, impact and erosion
— Interface, grain boundary stability and compatibility
— Dynamic characteristics to resist harsh environments and with self-healing capability

Multilayer Architecture due to Performance Requirements

- High temperature capable, high strength coatings
- Energy dissipation and chemical barrier interlayer
- Environmental barrier
- Nano-composite bond coat
- Ceramic matrix composite (CMC)
Advanced Environmental Barrier Coating Systems: Coating Material System Developments and Architecture

• High-stability multi-component ZrO$_2$/HfO$_2$, Hafnium-Rare Earth (RE) silicates, or Hafnium-Rare Earth (RE) aluminosilicate composites
• Alternating Composition Layered Composite (ACLC) and Sublayer EBCs systems
 – Advanced multi-component and RE silicate EBCs
 – Oxide-Si composite bond coats, in particular, HfO$_2$-Si bond coats
 – Self-healing and protective coating growth capability

![Diagram showing the structure of advanced environmental barrier coating systems](image)
Advanced Environmental Barrier Coating Systems

<table>
<thead>
<tr>
<th>Material Systems</th>
<th>Temperature capability</th>
<th>Thermal expansion</th>
<th>Resistance to oxidation and combustion environment</th>
<th>Mechanical stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>HfO$_2$-RE$_2$O$_3$</td>
<td>~3000°C</td>
<td>8-10x10$^{-6}$ m/m-K</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>HfO$_2$-Rare Earth silicates</td>
<td>~1900-2900°C</td>
<td>8-10x10$^{-6}$ m/m-K</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Rare Earth Silicates</td>
<td>~1800-1900°C</td>
<td>5-8.5x10$^{-6}$ m/m-K</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>Rare earth – aluminates and Alumino silicates</td>
<td>~1600-1900°C</td>
<td>5-8.5x10$^{-6}$ m/m-K</td>
<td>Good</td>
<td>Good</td>
</tr>
<tr>
<td>HfO$_2$-Si and RE-Si bond coat</td>
<td>Up to 2100°C</td>
<td>5-7x10$^{-6}$ m/m-K</td>
<td>Good</td>
<td>Excellent</td>
</tr>
</tbody>
</table>
EBC Processing using Atmospheric Plasma-Spray (APS) and Hybrid Plasma Spray / Electron Beam - Physical Vapor Deposition (EB-PVD) Coatings

Plasma-spray processing of environmental barrier coatings

EB-PVD Advanced HfO$_2$

Plasma spray ytterbium silicate

Plasma spray HfO$_2$-Si

Early generation hybrid environmental barrier coatings systems processed with combined Plasma Spray and EB-PVD processing
EBC Processing using Plasma Spray and EB-PVD

Oerlikon Metco Triplex Processed Advanced EBCs

Directed Vapor EB-PVD Processed Advanced EBCs
EBC Processing using Plasma Spray - Physical Vapor Deposition (PS-PVD)

- NASA advanced PS-PVD coating processing using Sulzer technology
- EBC is being developed for next-generation SiC/SiC CMC turbine airfoil coating processing
 - High flexibility coating processing – PVD, CVD and/or splat coating processing
 - High velocity vapor, non line-of-sight coating processing for complex-shape components

NASA Hybrid PS-PVD coater system

Vapor ZrO$_2$-Y$_2$O$_3$ coating

Splat/partial vapor Yb$_2$Si$_2$O

HfO$_2$-Si bond coat

PS-PVD processed coatings
Laser High Heat Flux Approach

- Turbine level high-heat-flux tests crucial for CMC coating system developments
- Real-time thermal conductivity measurements
- Advanced complex combined mechanical loading conditions and environments incorporated

Thermal gradients:

Turbine: 450°F across 100 microns
Combustor: 1250°F across 400 microns
Real-Time Thermal Conductivity Measurements and Damage Monitoring

7.9 µm pyrometer for $T_{\text{ceramic-surface}}$

$T_{\text{reflected}}$

T_{radiated}

Surface flow

$\Delta T_{\text{ceramic}} = \Delta T_{\text{measured}} - \Delta T_{\text{substrate}} - \Delta T_{\text{bond}}$

ΔT_{tc}

Two-color and 7.9 µm pyrometers for $T_{\text{substrate-back}}$

q_{thru}

Optional miniature thermocouple for additional heat flux calibration
Plasma Spray EBC Processing and Heat Flux Testing for CMC Component EBC Validations

- Advanced plasma sprayed multicomponent HfO$_2$-rare earth silicate with HfO$_2$-Si based environmental barrier coating optimized and down-selected
- Thermal conductivity ranged from 0.4 – 1.7 W/m-K

Laser heat flux test under thermal gradients
Thermal Conductivity of PS-PVD Yb$_2$Si$_2$O$_7$ Coatings For Process Optimization

— Processing and microstructural optimizations, aiming at achieving coating stability and maintaining lower thermal conductivity

![Image of Yb$_2$Si$_2$O$_7$ Coatings](image.png)

Thermal conductivity modeled using FEM

<table>
<thead>
<tr>
<th>Coating System</th>
<th>Porosity Modeled</th>
<th>Porosity Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>System 2</td>
<td>16%</td>
<td>13%</td>
</tr>
<tr>
<td>System 3</td>
<td>28%</td>
<td></td>
</tr>
<tr>
<td>System 4</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>System 6</td>
<td>20%</td>
<td></td>
</tr>
</tbody>
</table>

Porosity, %

0 10 20 30 40 50 60

Thermal conductivity, W/m-K

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Thermal conductivity modeled using FEM

Processing and microstructural optimizations, aiming at achieving coating stability and maintaining lower thermal conductivity.
PS-PVD Ytterbium Silicate EBC Tested in Heat Flux Conditions

- Demonstrated initial durability of HfO$_2$-ytterbium silicate-silicon at 1400-1500°C test temperatures in air and laser heat flux steam tests
- Thermal conductivity ranged from 0.6 to 2.5 W/m-K
- Achievable low thermal conductivity and unique structures with coatings

Three layer HfO$_2$-ytterbium silicate-Si completed 50hr laser heat flux thermal conductivity-durability tests in air and steam
PS-PVD Ytterbium Silicate EBC Tested in Heat Flux Conditions - Continued

- Demonstrated initial durability of ytterbium silicate with advanced HfO$_2$-Si bond coats at 1400-1500°C test temperatures in air and laser steam tests
- Thermal conductivity ranged from 0.6 to 2.5 W/m-K
- Some sintering led more significant thermal conductivity increases
Composite EBCs Considered for Improved Stability –
Process also developed for EBC systems

- Layered and nano-composite designs incorporated in various processing approaches
- Advanced composite systems shown to improve the temperature capability and recession resistance
- Improved mechanical properties for erosion and impact resistance
- Improved CMAS resistance
EB-PVD Composite Environmental Barrier Coatings – CMAS Reaction Tested

EB-PVD Processed EBCs: alternating HfO$_2$-rich and ytterbium silicate layer systems for CMAS and impact resistance
Advanced NASA 2700°F HfO2-Si and Rare Earth-Si Based Bond Coats

- Continued improvements in processing robustness and composition optimization
Advanced EBC Successfully Tested under 1000 hr Stress-Rupture Conditions at 2700°F

- EBC systems tested included various processed APS and EB-PVD EBCs

![Diagram of test setup]

- Laser beam delivery optic system
- Cooling shower head jets
- High temperature extensometer
- Test specimen

![Graph showing strain vs. time]

- Total strain vs. time graph with data points:
 - Gen II CMC, 1.98x10^{-7} /s; 15 ksi
 - Tsurface = 2700°F
 - Tinterface = 2500°F
 - TCMC back = 2320°F

- Gen I CMC, 7.19x10^{-8} /s; 15 ksi
 - Tsurface = 2400°F
 - Tinterface = 2300°F
 - Tback = 2050°C

- Gen I CMC, 4.10x10^{-8} /s; 10 ksi
 - Tsurface = ~2500°F
 - Tinterface = ~2350°F
 - Tback = ~2200°F

![Microstructures after testing]

- Microstructures after 1000 hr, 1482°C (2700°F), 1371°C (2500°F), 103 MPa (15 ksi) testing
Advanced EBC-CMC Fatigue Test with CMAS: Successfully Tested 300 h Durability in High Heat Flux Fatigue Test Conditions

- A thin EB-PVD turbine airfoil EBC system with advanced HfO$_2$-rare earth silicate and GdYbSi (controlled oxygen activity) bond coat tested at $T_{EBC\text{-surface}}$ 1537°C, $T_{\text{bond coat}}$ 1480°C, $T_{\text{back CMC surface}}$ 1250°C
- Fatigue Stress amplitude 69 MPa, at mechanical fatigue frequency f=3Hz, stress ratio $R=0.05$
- Low cycle thermal gradient fatigue 60min hot, 3min cooling

1537°C, 69MPa (10ksi), 300 h fatigue (3 Hz, R=0.05) on 14C579-011001_#8 CVI-MI SiC/SiC (with CMAS)
Advanced EBC Fatigue Creep-Fatigue of EBCs-CMCs in Complex Heat Flux and Simulated Engine Environments

- Long-term creep and fatigue validated EBCs and CMCs at various loading levels
- Demonstrated advanced 1482°C (2700°F) EBC and bond coat capabilities in complex environments
- Advanced coatings have minimized environment degradations of CMCs, demonstrating durability in fatigue and CMAS environments

Stress-oxidation and stress-CMAS environmental testing summary
Summary and Conclusions

• Advanced EBCs being developed and evaluated using APS, hybrid APS/EB-PVD, EB-PVD and PS-PVD
 – Achieved advanced composition designed EBCs
 – Significantly expanding envisioned high performance coating architecture development
 – Demonstrated initial durability

• Advanced, high temperature testing approaches showed significant advantages in the development of advanced environmental barrier coating systems
 – Simulated engine thermomechanical conditions
 – Simulated environment conditions
 – Real time thermal conductivity, stability and durability
 – Capable quantifying the EBC degradation and performance
Acknowledgements

The work was supported by NASA Fundamental Aeronautics Program (FAP) Transformational Tools and Technologies Project.

The authors would like to acknowledge the contributions and helpful discussions from the following:

• Ron Phillips (Vantage Partners, LLC), mechanical testing
• Terry McCue (SAIC/NASA GRC, SEM/EDS)
• Joy Buehler (Vantage Partners, LLC, Met Lab)
• James A. DiCarlo, James L. Smialek, Janet Hurst, Dennis Fox, Robert A. Miller, and Nate Jacobson (NASA GRC)