

McComas 1 30th Annual AIAA/USU

 Conference on Small Satellites

SSC16-IV-1

The Core Flight System (cFS) Community: Providing Low Cost Solutions for Small

Spacecraft

David McComas, Jonathan Wilmot, Alan Cudmore

NASA Goddard Space Flight Center

8800 Greenbelt Road Greenbelt, MD 20771

301-286-9038

david.c.mccomas@nasa.gov

ABSTRACT

In February 2015 the NASA Goddard Space Flight Center (GSFC) completed the open source release of the entire

Core Flight Software (cFS) suite. After the open source release a multi-NASA center Configuration Control Board

(CCB) was established that has managed multiple cFS product releases. The cFS was developed and is being

maintained in compliance with the NASA Class B software development process requirements and the open source

release includes all Class B artifacts. The cFS is currently running on three operational science spacecraft and is

being used on multiple spacecraft and instrument development efforts.

While the cFS itself is a viable flight software (FSW) solution, we have discovered that the cFS community is a

continuous source of innovation and growth that provides products and tools that serve the entire FSW lifecycle and

future mission needs. This paper summarizes the current state of the cFS community, the key FSW technologies

being pursued, the development/verification tools and opportunities for the small satellite community to become

engaged. The cFS is a proven high quality and cost-effective solution for small satellites with constrained budgets.

INTRODUCTION

The core Flight System1 (cFS) is a flight software

(FSW) product line developed by the National

Aeronautics and Space Administration (NASA)

Goddard Space Flight Center’s (GSFC) Flight

Software Systems Branch (FSSB) over the past 15

years. The cFS product line was developed

because previous GSFC FSW reuse efforts had

limited success in reducing cost and schedules.

Early reuse efforts used a “clone and own”

approach where a new project would copy FSW

components from one or more previous missions

based on functional requirement similarities. This

informal source-code based approach to reuse

proved difficult for managers to control the scope

of the changes and as a result a comprehensive

verification and validation effort had to be

performed for the new mission which severely

limited the cost savings. In addition since FSW

components were not configuration managed

independent of projects, component quality did not

necessarily increase because a single lineage for

each component was not maintained.

To meet these challenges the FSSB formed a team

of senior engineers to perform a structured

heritage analysis across a decade of missions. The

initial funding was from non-mission sources

which allowed the engineers to participate

uninhibited by near-term mission schedules. The

diversity of the heritage missions (single string vs.

redundant string, varying orbits, different

operational communication scenarios, etc.)

provided valuable insights into what drove FSW

commonality and variability across different

missions. The team took the entire FSW life-cycle

into consideration, including in-orbit FSW

sustaining engineering, as they performed their

analysis. Identifying system and application level

variation points to address the range and scope of

the flight systems domain. The goal was to enable

portability across embedded computing platforms

and to implement different end-user functional

needs without the need to modify the source code.

The cFS uses compile-time configuration

parameters to implement the variation points.

Figure 1 shows the results using a classic software

engineering “V-model”. The shaded components

are cFS artifacts and the <p> notation indicates a

parameterized artifact. This lifecycle product line

mailto:david.c.mccomas@nasa.gov

McComas 2 30th Annual AIAA/USU

 Conference on Small Satellites

approach dramatically increased the number of

reusable artifacts and changed how future missions

would approach their FSW development efforts.

Figure 1: cFS-based Project FSW Lifecycle

ARCHITECTURAL HIGHLIGHTS

While a majority of the heritage analysis focused on

FSW functional features a significant and conscious

effort was made to address the cFS’s architectural

quality attributes2. Quality attributes are hard to

quantitatively trade but they can ultimately determine

the success or failure of a software product line. The

prominent quality attributes balanced by the cFS

include portability, performance, reusability, usability,

scalability, interoperability, verifiability, complexity,

and predictability. Design meetings, trade studies, and

code reviews were used to create a consistent

architectural quality attribute balance. Two key trades

were performed to determine whether to support file

systems and what type of linking to support. At the time

of the cFS formulation these were difficult trades

because to date no GSFC missions had flown a file

system and dynamic linking wasn’t supported by

RTEMS which was being considered for a mission.

The results of the trades were to include file system

support and to support both static and dynamic linking.

These decision have proven to be vital to the CFS’s

reusability, usability, and interoperability which has

been very beneficial to the ever expanding user base.

Two additional pivotal cFS architectural features

are the Application Program Interface (API)-based

layers and the definition of an application as a

distinct well-defined architectural component.

Figure 2 illustrates the four distinct layers and

identifies which components have been released as

open source. Layer 1 contains the Operating

System (OS) and Board Support Package (BSP)

and access to the functionality in these

components is controlled through two APIs: the

Operating System Abstraction Layer (OSAL3) and

the Platform Support Package (PSP). The OSAL

and PSP APIs provide a platform independent (OS

and hardware) interface that provides common OS

and BSP services. Layer 2 contains the core Flight

Executive (cFE) that provides five services that

were determined to be common across most FSW

projects. The APIs in Layers 1 and 2 have been

instrumental in the cFS’ success across multiple

platforms and the cFE API has remained

unchanged since the launch of the Lunar

Reconnaissance Orbiter in 2009. Together the

APIs define an application runtime environment

for the applications3 in Layer 3. The application

layer contains thread-based applications as well as

libraries (e.g. linear algebra math library) which

can be shared among multiple applications.

Figure 2: cFS Layered Architecture

The second pivotal architectural feature is the

definition of an application as a pluginable

component. The cFE enables this feature by
providing a core set of services, a runtime

environment, and a tool suite for building and

hosting flight software applications. The core

services include a Software Bus (messaging),

Time Management, Event Messages (Alerts),

Table Management (runtime parameters), and

Executive Services (startup and runtime). The

Software Bus provides a publish-and-subscribe

CCSDS standards-based inter application

messaging system that supports single and multi-

processor configurations. Time Management

provides time services for applications. The Event

Message service allows applications to send time-

McComas 3 30th Annual AIAA/USU

 Conference on Small Satellites

stamped parameterized text messages. Four

message classes based on severity are defined and

filtering can be applied on a per-message and per-

class basis. Tables are binary files containing

groups of application defined parameters that can

be changed during runtime. The table service

provides a ground interface for loading and

dumping an application’s tables. Executive

Services provides the runtime environment that

allows applications to be managed as an

architectural component.

The cFS manages EEPROM using a file system and

uses a script file to determine which application object

files should be loaded during initialization. In turn

applications subscribe to cFE services during their

initialization. Since cFE resources are managed on a

per-application basis the cFE supports starting,

stopping, and loading individual applications during

runtime. This allows applications to be developed

independent of the platform, very similar to how apps

are managed by smart phones. It can also simplify on-

orbit maintenance as demonstrated by the Global

Precipitation Measurement (GPM) FSW sustaining

engineering team in the fall of 2014 when they

successfully replaced the file transfer application

without disrupting normal science operations.

CFS COMPONENT SUMMARY

The cFS is a collection of separately configuration

managed components. Working up the layers in Figure-

1 the configured items are the OSAL, the cFE, and each

application. PSPs are developed for specific hardware-

OS platforms and are currently bundled with the cFE.

Table 1 shows the OSAL platforms currently supported,

under development, and being planned. OSAL releases

include unit level test suites.

Table 1: OSAL Platforms

Operating

System

OSAL

Version

Status Target

POSIX/Linux 4.1.1 Production
Desktop Dev. use

CentOS

6.x/Ubuntu 14.04

32 bit

RTEMS 4.1.1 Production
Flying on MMS

Mission RTEMS

4.10/Coldfire

VxWorks 4.1.1 Production
Flying on GPM

Mission

vxWorks

6.4/PowerPC

FreeRTOS 4.2.x In Dev.
GSFC Dellingr

CubeSat Mission

FreeRTOS/Arm

VxWorks 6.x

SMP

4.3.x In Dev. vxWorks 6.7 LEON3

Dual Core

ARINC653 4.3.x In Dev. Green Hills Integrity
OS

RTEMS 4.12

+SMP

Future Future Future Release

Xenomai

Linux

Future Future Future Release

Table 2 shows the current PSPs delivered with cFE

6.4.2. The level of reuse depends upon a new user’s

platform similarities. PSP releases include unit level

test suites which can be used as starting points when

modifying an existing PSP or creating a new one. The

cFE is verified at both the unit level and the functional

requirements level. All of the unit test source code and

functional scripts are part of the cFE release.

Table 2: cFE 6.4.2 Platforms Support Packages

Board/Platform OSAL Operating

System

Status

CentOS/Ubuntu

Linux Desktop

POSIX/Linux Used for

development and

testing

MMS Custom
C&DH Coldfire

RTEMS 1 year in flight on
MMS Mission

GPM RAD750 VxWorks 2 yeara in flight on
GPM Mission

Gomspace

Nanomind ARM
CubeSat

FreeRTOS Under development

for GSFC Dellingr
CubeSat Mission

GSFC
MUSTANG Dual

Core LEON3

VxWorks SMP Under development
for GSFC

MUSTANG Dual

Core LEON3
architecture

Table 3 provides metrics for the cFS as it is being used

on GSFC’s GPM mission that launched on February 27,

2014. These metrics are representative of the current

versions of the cFS components since they have only

undergone minor updates since GPM’s final build so

they provide a good reference point for future missions.

Note the EEPROM cFE image and application table

images are uncompressed and the applications code

images are compressed. Also note memory sizes are

dependent upon the configuration parameter settings.

McComas 4 30th Annual AIAA/USU

 Conference on Small Satellites

A configuration parameter is defined with either a

mission scope or a processor scope. For example the

maximum length of an event message is defined at the

mission level and whether a local event log is present is

defined at the processor level. It’s hard to gauge the

configuration complexity with simply a number

because the parameters span a large functional range

from a simple default file name to a system behavioral

definition like the time client/server configuration. Note

the OSAL and PSP do not have configuration

parameters because they are explicitly code for a

specific target platform.

Table 3: GPM cFE/Application Metrics

cFE/

App

Logical

Lines of

Code

(non-table)

Config.

Parameters

EEPROM

(bytes)

cFE 12,930 General: 17

Executive Service:

46
Event Service: 5

Software Bus: 29

Table Service: 10
Time Service: 32

341,561

CFDP 8,559 33 85,812

Checksum 2,873 15 35,242

Data

Storage

2,429 27 40,523

File

Manager

1,853 22 16,272

Health &

Safety

1,531 45 15071

House-

keeping

575 8 8.059

Limit

Checker

2,074 13 31,026

Memory

Dwell

1,035 8 8,617

Memory

Manager

1,958 25 15,840

Scheduler 1,164 19 35,809

Stored

Command

(with 124

command

sequences)

2,314 26 104,960

GPM is a NASA Class B earth-nadir pointing mission

with articulating solar arrays, a gimbaled high gain

antenna, and nearly fully redundant hardware all under

FSW control. It has 4 MBs of EEPROM (two duplicate

banks of 2MB) and 24 MBs of SRAM. EEPROM is

the most constrained memory and the cFS uses ~35%

of a 2MB EEPROM bank. From a lines-of-code

perspective the cFS accounts for 42% of the GPM FSW

(excluding the VxWorks OS). Using the Software

Evaluation and Estimation of Resources – Software

Estimating Model (SEER-SEM) tuned for NASA

missions the cost estimates to develop the complete cFS

suite from scratch for a Class B mission like GPM is 49

man years. Using the cFS still incurs costs such as

tuning configuration parameters, adjusting task

priorities, etc., but these costs have been estimated on

the order of 2 man years for a mission of GPM’s

complexity and class.

CFS COMMUNITY

The cFS was original developed for in-house GSFC

missions and is being used on the Lunar

Reconnaissance Orbiter launched in 2009, on GPM

launched in 2014, and on the Magnetospheric Multi-

scale Mission Spacecraft launched in 2015. Over the

past few years it has been used across multiple NASA

centers including the Ames Research Center’s (ARC)

Lunar and Dust Environment Explorer spacecraft

launched in 2014 and the Johnson Space Center’s

Morpheus project tested in 2013. The Johns Hopkins

University (JHU) Applied Physics Lab’s (APL)

Radiation Belt Storm Probe launched in 2012 used the

cFE and they are also using it for the Solar Probe Plus

mission scheduled to launch in 2018. Several NASA

missions currently under development are using the cFS

and these missions range in scope from JSC’s Orion

backup computer to GSFC’s Dellingr CubeSat. In terms

of “Classes” as defined by NASA Procedural

Requirements (NPR) 7150.2B4 these range from Class

A to Class D.

In February 2015 GSFC announced the open source

release of twelve applications commonly used on most

missions which now makes the entire cFS “stack”

available as open source. In early 2015 a NASA-wide

Configuration Control Board (CCB) with members

from six NASA centers (ARC, Glenn Research Center,

GSFC, JSC, Langley Research Center, and Marshall

Space Flight Center) and the JHU APL was established.

The CCB is responsible for reviewing and

approving/disapproving the proposed changes to the

open source cFS product baselines and technology

branches. It also ensures all baseline products meet

NPR-7150.2B Class B requirements4. This is a critical

achievement because each NASA center has a voice in

the product’s governance which reduces their risks in

adopting the cFS and committing resources to products

based on the cFS. The CCB currently controls changes

to all of the open source artifacts and multiple

components of the cFS have been released under the

CCB’s governance.

McComas 5 30th Annual AIAA/USU

 Conference on Small Satellites

Another significant cFS user community expansion

opportunity is the recent increase in popularity of

CubeSats, cube-shaped nanosatellites that measure

about four inches per side and weigh less than three

pounds. The NASA CubeSat Launch Initiative5

provides opportunities for CubeSats to be flown as

auxiliary payloads on larger NASA missions. Free rides

into space and advancements in sensor, actuator and

instrumentation miniaturization allow CubeSats to

provide a cost effective solution for technology

demonstrations, education research and science

missions. As part of the Whitehouse Maker Initiative,

NASA is striving to launch 50 small satellites

developed by all 50 states within the next five years.

Recent CubeSat efforts have recognized that FSW is

one of the big technical challenges because even though

the hardware is small the FSW functionality can still be

large and complex. Therefore the cFS is positioned as a

viable open source FSW solution for CubeSats. As a

result the CubeSat community represents a significant

potential increase to the cFS user community.

However, even though the cFS is open source the

interactive cFS community is predominantly within the

boundaries of NASA. The remainder of this paper

describes recent intra-NASA community activities,

efforts to expand the community, and technology

initiatives. All of these efforts will benefit the small

satellite community.

Within the NASA community the power and benefits of

an open collaborative effort have led to several

enhancements. Simply expanding the number of

projects using the cFS in more diverse usage scenarios

has accelerated the product line improvements far

beyond what could have been achieved with the limited

number of cFS-based projects at the GSFC. A software

reuse observation is it takes the following sequence to

make software reusable: design component for reuse,

reuse the component in a new context (at least 3 is a

good sample), and correct the component’s initial reuse

limitations. Note that all of the cFS applications are on

version 2 or greater because they have been through

this maturation sequence.

In addition to making incremental changes to the initial

cFS artifacts, the NASA community has been

expanding the features of the product line. For

example, JSC provided a performance analysis tool

written in Java that is part of the current cFE open

source release. The cFE provides a utility for capturing

runtime markers that are saved to a file. The

performance analyzer tool creates logic analyzer type

graphical displays based on the captured data. This tool

is critical for adjusting task priorities and tuning the

performance of a new system. JSC also developed

generic Command Ingest (CI) and Telemetry Output

(TO) applications that are in the NASA open source

release process. The current cFS release only contains

UDP-based “Lab” versions of the Command Ingest (CI)

and Telemetry Output (TO) applications. Users must

write their own custom CI and TO applications for

flight. JSC’s creation of generic CI and TO applications

allows the same user interface to be used regardless of

the custom transport service layer. This is a substantial

step forward and will be of great benefit to the cFS

community. New users have found writing their own

custom CI and TO applications to be challenging so the

generic CI and TO applications will make their

deployment of the cFS much simpler and should further

expand the cFS user base. These applications also

advance the state of the cFS in another significant way.

The cFS does not currently have a reusable device plug-

in design pattern. The generic CI and TO application

designs can serve as models for future applications that

need to interface to flight hardware such as sensors and

actuators.

Any NASA component released as open source will

benefit the global community but we are working on

ways to improve the engagement and interaction of the

global community. In October 2015 the first cFS

Workshop was held at the JHU APL campus that

included 11 cFS user presentations6. A second

workshop is planned for December 2016 at the

Beckman Institute at the California Institute of

Technology. In June 2016 the University of Florida,

who leads the National Science Foundation’s (NSF)

Center for High Performance Reconfigurable

Computing (CHREC) started a cFS website7. This

website provides discussion forums, news pages,

document repositories, and github repositories for

collaborative projects. In order to facilitate successful

public collaborations and to create a cFS “App Store”

ecosystem some technological advancements need to

occur.

NASA TECHNOLOGY INITIATIVES

There are several technology initiatives within the cFS

community that are focused on streamlining the

development process and lowering the barrier to entry

in the flight software domain. Like many good ideas,

different community members saw the need and were

originally developing these independently and were not

aware of other similar activities. After the establishment

of regular community meetings the community started

collaborating. The first technology focuses on the out of

box experience for new developers/users. The goal is to

create an open source “kit” that contains a development

environment with all the elements needed to develop

and test the code very rapidly without having to

understand all the inner workings. The second

McComas 6 30th Annual AIAA/USU

 Conference on Small Satellites

technology deals with managing the interfaces, topics,

and namespace for the cFS messaging functions. The

third technology supports model-based engineering

with automatic code generation. The fourth and last

technology discussed in this paper automates the testing

process such that new platforms and host environments

can be used without having to manually rewrite and run

regression tests. Each of these is discussed below.

cFS Kits

The cFS was originally developed for GSFC in-house

missions and has been incrementally released as open

source, therefore it was never packaged as an integrated

product line. As a result it can be difficult for new

users, especially organizations that have never written

FSW to deploy, configure, and extend the cFS for their

missions. Two NASA efforts are now underway to

create open source cFS “kits” that include a ground

system and a spacecraft/environment simulator. These

kits provide a complete solution allowing users to

immediately have a working product that can be ported

to their platform which is much easier than

downloading the cFS components and trying to

immediately deploy them to their target platform. All

users could benefit from cFS kits but the greatest

impact and benefits will be to CubeSats and other small

FSW teams.

The NASA GSFC Independent Validation &

Verification (IV&V) Program is creating the NASA

Operational Simulator for Small Satellites (NOS^3).

For its operator interface NOS^3 uses Ball Aerospace’s

COSMOS8, an open-source user interface for command

and control of embedded systems. NOS^3 uses a GSFC

open-source simulator called 429 to provide spacecraft

and environmental simulations. NOS^3 is a

sophisticated environment that supports software-only

simulations and a hybrid of hardware and software.

COSMOS provides enough functionality to be used as

the operational ground system so NOS^3 can be used

for the entire FSW lifecycle. NASA IV&V is

developing NOS^3 as part of its Simulation-to-Flight I

(STF-1) CubeSat project in collaboration with the West

Virginia Space Grant Consortium (WVSGC) and West

Virginia University (WVU). NASA IV&V plans to

distribute NOS^3 to other CubeSat developers and

release the suite to the open-source community.

The NASA JSC is developing its own cFS kit that is

tailored toward providing a cFS training platform. It’s

implemented within a Virtual Machine, using a custom

open-source Eclipse-based user interface and JSC’s

open-source simulation environment called Trick10.

The kit is designed for use with a low cost quadcopter

drone. The kit contains several lessons and tutorials

that each showcase different cFS functionality. These

lessons include interfaces with the quadcopter

hardware, loading and executing stored command

sequences, monitoring telemetry, taking off, landing,

etc. NASA JSC is currently in the process of releasing

their cFS quadcopter kit as open source.

cFS kits will help expand the cFS community by

simplifying the process for new users to learn about the

cFS and to deploy the cFS for their missions. The

second area of technology initiatives will help all cFS

users to participate in a collaborative cFS ecosystem.

These initiatives are maturing the capabilities of the

cFS’ plug ‘n play architecture. They are occurring at

the application level and the hardware device level.

These initiatives are not as mature as the cFS kits but

once implemented they will have a significant impact

on how user contributions can be integrated back into

the product line.

For applications, the goal is to automate the integration

of an application to the cFS build, unit verification,

deployment, and functional validation procedures. The

goal is to have the next cFE release use cmake to

control the build process and simplify the manual

process of setting and assigning configuration values

and messaging topics.

Electronic Data Sheets

The current method of specifying software component

and device interfaces is through paper Interface Control

Documents (ICDs). This method is manual and prone to

human error, and has repeatedly been a source of

software errors and system failures. To reduce errors

and speed the development process the community is

adopting the concept of electronic data sheets originally

developed at the Air Force Research Lab as part of the

Space plug-and-play (PnP) avionics (SPA) architecture

eXtended Transducer Electronic Datasheets11 (xTEDS).

The cFS is using the EDS specification being

standardized through the international Consultative

Committee for Space Data Systems organization12.

The EDS concept has a number of use cases that

support streamlining the development process as shown

in Figure 3. Several of these use cases are in active

development at different cFS user organizations with

the Component (software) EDS -> Designer tools ->

Flight SW components and Component (software) EDS

-> Ground System -> Ground System Database flows

being readied for integration into the next cFS release.

McComas 7 30th Annual AIAA/USU

 Conference on Small Satellites

Figure 3: Use of EDS in Software Development

Model-based Code Generation

During the development of the LADEE spacecraft the

software team at NASA ARC developed tools to

facilitate the automatic code generation of control

system Simulink models directly into cFS applications.

This tool, called the Simulink Interface Layer13 (SIL)

allowed for rapid/iterative software development

supporting an agile approach. The ARC team has

provided this tool back to the cFS community and the

NASA GSFC is using it on two International Space

Station (ISS) instruments: the Neutron start Interior

Composition Explorer (NICER) instrument and the

Global Ecosystem Dynamics Investigation Lidar

(GEDI).

Figure 4: Simulink Interface Layer

Assert-based Unit Tests

The UT-Assert unit test framework was created to

support automation of unit test execution for software

components. Previous unit tests had to be manually

reviewed after each run to determine whether the test

passed or failed. UT-Assert tests are written with assert

statements that evaluate whether a condition is true or

false and returns a simple PASS or FAIL that can be

passed to a test script. Each test case is written to be

self-verifying and eliminates the need for a manual

review after each run. For cFS testing a set of stub

function libraries have been added to the test

framework to support fault insertion. The “white box”

fault insertion supports maximum path testing and code

coverage. The UT-Assert tests have now been included

as part of the automated nightly build process for the

NASA cFS Git repository.

Figure 5: Unit Test Framework

CONSLUSION

The cFS product line has already shown significant

savings in cost and schedule for NASA flight missions

while improving the overall quality and usability of the

code. With the technology initiatives at or near

completion, the cFS and support tools are providing an

open source low cost solution for small spacecraft that

is being adopted by members of the CubeSat

community. As the community widens these initiatives

will also continue to build upon themselves and to

create the need for new initiatives. For example the

cFS kits would be expanded to provide an integrated

development environment (IDE) similar to what’s

provided for developing smart phone apps.

McComas 8 30th Annual AIAA/USU

 Conference on Small Satellites

Furthermore as the community starts to supply

applications, they may have different levels of maturity.

Based on the current community organization we

expect applications initially designed by and for the

cFS, independent of a project or mission to be rare. We

are expecting the majority of the applications to come

from either a mission or a technology effort. Mission

applications are developed within a mission’s budget

and schedule constraints therefore they are not typically

designed for reuse. Initially they will be submitted “as

is” so another mission could still use the application

even though it may not be designed for reuse. The

reusability maturity process would occur either

incrementally or if there’s enough demand and funding,

an app could be matured as a mission independent

effort. The maturity process involves generalizing and

parameterizing the requirements, design, and code and

updating the unit and build test artifacts to comply with

the cFS standards. Applications submitted from a

technology effort would follow a similar maturity

process except they may not initially be suitable for use

as mission critical FSW without some upfront work.

In its current state the cFS is a high quality FSW

product line applicable to all classes of FSW. The cFS

kits will help expand the cFS user base by simplifying

the adoption process. The cFS server hosted by the

University of Florida CHREC team, will help cFS users

to communicate and coordinate activities. The

technological advances towards a more seamless plug

‘n play architecture will allow the community to expand

and share more applications. Taken together these

advancements position the cFS to significantly change

how spacecraft FSW is developed and it is especially

attractive as a high quality cost-effective solution for

small satellites with constrained budgets.

Acknowledgments

The authors would like to acknowledge and thank the

cFS community for all the hard work and dedication in

maturing the cFS and contributing ideas, applications

and tools. We would also like to acknowledge technical

and financial support from the NASA Engineering and

Safety Center's (NESC).

References

1. National Aeronautics and Space Administration,

Flight Software Systems Branch, cFS Overview

2016, http://cfs.gsfc.nasa.gov/Introduction.html.

2. Jonathan Wilmot, Lorraine Fesq, Dan Dvorak

“Quality Attributes for Mission Flight Software:

A Reference for Architects”,

http://resources.sei.cmu.edu/library/asset-

view.cfm?assetid=454600

3. OSAL, cFE, cFS Applications Suite Open Source

SourceForge Download Sites, 2016,

http://sourceforge.net/projects/osal/,

http://sourceforge.net/projects/coreflightexec/,

https://sourceforge.net/projects/cfs-XX/ where

XX is the application abbreviation. Reference 1

(cFS Overview) has links to all of the

applications SourceForge sites.

4. National Aeronautics and Space Administration,

Online Directives Information System, Software

Engineering Requirements NPR-7150.2B,

http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NP

R&c=7150&s=2

5. National Aeronautics and Space Administration

CubeSat Launch Initiative, 2015,

http://www.nasa.gov/directorates/heo/home/Cube

Sats_initiative.html#.VWZXks9Viko

6. Core Flight System Workshop:

http://flightsoftware.jhuapl.edu/files/_site/worksh

ops/2015/

7. National Science Foundation’s Center for High

Performance Reconfigurable Computing cFS

Website, http://cfs.chrec.org

8. Ball Aerospace COSMOS, http://cosmosrb.com/

9. Eric Stoneking, 42 Simulator,

https://sourceforge.net/projects/fortytwospacecraf

tsimulation/

10. National Aeronautics and Space Administration,

JSC Trick Simulation,

https://github.com/nasa/Trick

11. Air Force Research Lab Space Plug-and-Play

Avionics,

http://www.kirtland.af.mil/shared/media/docume

nt/AFD-111103-031.pdf

12. CCSDS XML Specifications for Electronic Data

Sheets for Onboard Devices and Software

Components, 2015,

http://cwe.ccsds.org/fm/Lists/Projects/DispForm.

aspx?ID=269

13. National Aeronautics and Space Administration ,

ARC, Simulink Interface Layer,

https://ti.arc.nasa.gov/publications/27267/downlo

ad/

http://cfs.gsfc.nasa.gov/Introduction.html
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=454600
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=454600
http://sourceforge.net/projects/osal/
http://sourceforge.net/projects/osal/
http://sourceforge.net/projects/coreflightexec/
https://sourceforge.net/projects/cfs-XX/
http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7150&s=2
http://nodis3.gsfc.nasa.gov/displayDir.cfm?t=NPR&c=7150&s=2
http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html#.VWZXks9Viko
http://www.nasa.gov/directorates/heo/home/CubeSats_initiative.html#.VWZXks9Viko
http://flightsoftware.jhuapl.edu/files/_site/workshops/2015/
http://flightsoftware.jhuapl.edu/files/_site/workshops/2015/
http://cfs.chrec.org/
http://cosmosrb.com/
https://sourceforge.net/projects/fortytwospacecraftsimulation/
https://sourceforge.net/projects/fortytwospacecraftsimulation/
https://github.com/nasa/Trick
http://www.kirtland.af.mil/shared/media/document/AFD-111103-031.pdf
http://www.kirtland.af.mil/shared/media/document/AFD-111103-031.pdf
http://cwe.ccsds.org/fm/Lists/Projects/DispForm.aspx?ID=269
http://cwe.ccsds.org/fm/Lists/Projects/DispForm.aspx?ID=269
https://ti.arc.nasa.gov/publications/27267/download/
https://ti.arc.nasa.gov/publications/27267/download/

