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As part of the planned manned mission to Mars, NASA has noticed that shipping oxygen as a 

part of life support to keep the astronauts alive continuously is overly expensive, and impractical. 

As such, noting that the Martian atmosphere is 95.37% CO2, NASA chemists noted that one 

could obtain oxygen from the Martian atmosphere. The plan, as part of a larger ISRU (in-situ 

resource utilization) initiative, would extract water from the regolith, or the Martian soil which 

can be electrolyzed by solar panel produced voltage into hydrogen and oxygen. The hydrogen 

can then be used in the Sabatier reaction with carbon dioxide to produce methane and water 

producing a net reaction that does not lose water and outputs methane and oxygen for use as 

rocket fuel and breathing 

Electrolyze water from regolith:  2H2O → 2H2 + O2 

Sabatier reaction:   CO2 + 4H2 → CH4 + 2H2O 

Net reaction:    𝐂𝐎𝟐 + 𝟐𝐇𝟐𝐎 → 𝐂𝐇𝟒 + 𝟐𝐎𝟐 

Additionally,  oxygen could be produced by Solid-Oxide Electrolysis, 

 

Reduce Carbon Dioxide:        CO2 + 2𝑒
− → O2− + CO 

Recombine monatomic oxygen: 2O2− → 4𝑒− + O2 

Net reaction:    𝟐𝐂𝐎𝟐 → 𝐎𝟐 + 𝟐𝐂𝐎 

 

However this produces waste products of Carbon Monoxide. 

For six astronauts, 2.2 kg per hour production of breathable oxygen is required. Given the 

conversion efficiency of carbon dioxide to oxygen and the composition of the Martian 

atmosphere, as well as the required oxygen production, we can calculate the mass intake required 

in the Martian atmosphere   

𝑚̇mars = 𝑚̇CO2
1

𝜂

1

𝑤CO2
= 𝑚̇O2

𝑀CO2
𝑀O2

𝑛CO2
𝑛O2

1

𝜂

1

𝑤CO2
 

And the volume of gas this represents 

𝑉̇mars =
𝑚̇mars
𝑀CO2

𝑅
𝑇

𝑃
=
𝑚̇O2
𝑀O2

𝑛CO2
𝑛O2

1

𝜂

1

𝑤CO2
𝑅
𝑇

𝑃
[1]. 

The problem is that this requires such an intake of carbon dioxide that fine dust in the Martian 

atmosphere kicked up by frequent dust storms on the planet can interfere with the production of 

oxygen by adversely affecting the ISRU systems. Thus, it must be filtered out. The low pressure 

of the Martain Atmosphere would limit the flow rate on a conventonal filter thanks to the 



pressure gradient across the filter so what is required is a plasma device called an electrostatic 

precipitator  [2]. 

In an electrostatic precipitator, electric fields push dust out of a gas it is suspended in so the 

particles need to overcome the flow velocity 𝑥̇ =
𝑄

𝜋𝑅2
 with a radial velocity 𝑟̇ =

𝑄

𝜋𝑅

1

𝐿
 thus dust 

particles will have a 100% efficiency rate with a velocity 𝑟̇ >
𝑅𝑥̇

𝐿
 . Thus, given that the fraction of 

the dust particles taken out of the gas is 
𝑑𝑁

𝑁
= −

2𝜋𝑅𝑟̇𝑑𝑡

𝜋𝑅2
= −

2𝑟̇𝑑𝑡

𝑅
, we can integrate this to get 

∫
𝑑𝑁

𝑁
=

𝑁(𝑡)

𝑁0

∫ −
2𝑟̇

𝑅

𝑡

0

𝑑𝑡 

Revealing the fractional change in the number of particles over time as  

𝑁(𝑡)

𝑁0
= exp (−

2𝑟̇𝑡

𝑅
)  

And given the residence time in the tube 𝑡 =
𝜋𝑅2𝐿

𝑄
, this gives a penetration of 

𝑃 =
𝑁𝑜𝑢𝑡
𝑁0

= exp (−
2𝜋𝑟̇𝑅𝐿

𝑄
) 

And an efficiency of  

𝜂 = 1 − exp (−
𝑟̇𝐴𝐶
𝑄
). 

From a conservation of energy perspective,  

𝑞𝑉 =
1

2
𝑚𝑟̇2 → 𝑟̇ = √

2𝑞

𝑚
𝑉 

So given that  𝑥̇ =
𝑄

𝜋𝑅2
, combining these equations yields  

√
2𝑞

𝑚
𝑉 >

𝑄

𝜋𝑅𝐿
[3]. 

To calculate the breakthrough voltage a homogeneous electrical field is assumed. This is the case 

in a parallel plate capacitor setup. The electrodes may have the distance 𝑑. The cathode  is 

located at the point 𝑥 = 0. To get impact ionization, the electron energy 𝐸𝑒 must become greater 

than the ionization energy 𝐸𝐼 of the gas atoms between the plates. Per length of path 𝑥 a number 

of 𝛼 ionizations will occur. 𝛼 is known as the first Townsend coefficient as it was introduced by 

Townsend. The increase of the electron current Γ𝑒 can be described for the assumed setup as   

Γ𝑒(𝑥 = 𝑑) = Γ𝑒(𝑥 = 0)𝑒
𝛼𝑑 



(so the number of free electrons at the anode is equal to the number of free electrons at the 

cathode that were multiplied by impact ionization. The larger 𝑑 and/or 𝛼 the more free electrons 

are created.) The number of created free electrons is  

 

Γ𝑒(𝑑) − Γ𝑒(0) = Γ𝑒(0)(𝑒
𝛼𝑑 − 1). 

Neglecting possible multiple ionizations of the same atom, the number of created ions is the 

same as the number of created electrons:  

Γ𝑖(0) − Γ𝑖(𝑑) = Γ𝑒(0)(𝑒
𝛼𝑑 − 1) 

is the ion current. To keep the discharge going on, free electrons must be created at the cathode 

surface. This is possible because the ions hitting the cathode release secondary electrons at the 

impact. (For very large applied voltages also field electron emission can occur) Without field 

emission, we can write  

 

Γ𝑒(0) = 𝛾Γ𝑖(0) 
Where 𝛾 is the mean number of generated secondary electrons per ion. This is also known as the 

second Townsend coefficient. Assuming that Γ𝑖(𝑑) = 0 one gets the relation between the 

Townsend coefficients by substitution and transforming:  

 

𝑎𝑑 = ln (1 +
1

𝛾
). 

What is the amount of 𝛼? The number of ionization depends upon the probability that an electron 

hits an ion. This probability 𝑃 is the relation of the cross-sectional area of a collision between 

electron and ion 𝜎 in relation to the overall area 𝐴 that is available for the electron to fly through:  

𝑃 =
𝑁𝜎

𝐴
=
𝑥

𝜆
. 

As expressed by the second part of the equation, it is also possible to express the probability as  

The relation of the path traveled by the electron 𝑥 to the mean free path length 𝜆 (the distance at 

which another collision occurs). 𝑁 is the number of molecules which electrons can hit. It can be 

calculated using the equation of state of the ideal gas  

 

𝑝𝑉 = 𝑁𝑘𝐵𝑇. 
The collision cross section can be written as 𝜎 = 𝜋(𝑟𝑎

2 + 𝑟𝑏
2). As the radius of an electron can be 

neglected compared to the radius of an ion 𝑟𝐼 it simplifies to 𝜎 = 𝜋𝑟𝐼
2. Using this relation, 

substitution for the mean free path length yields  

𝜆 =
𝑘𝐵𝑇

𝑝𝜋𝑟𝐼
2 =

1

𝐿𝑝
 

Where the factor 𝐿 was only introduced for a better overview. The alteration of the current of not 

yet collided electrons at every point in the path 𝑥 can be expressed as 

 

𝑑Γ𝑒(𝑥) = −Γ𝑒(𝑥)
𝑑𝑥

𝜆𝑒
. 

This differential equation can easily be solved:  

 

Γ𝑒(𝑥) = Γ𝑒(0) exp (−
𝑥

𝜆𝑒
). 

The probability that 𝜆 > 𝑥 ( that there was not yet a collision at the point 𝑥) is  



𝑃(𝜆 > 𝑥) =
Γ𝑒(𝑥)

Γ𝑒(0)
= exp (−

𝑥

𝜆𝑒
). 

According to its definition 𝛼 is the number of ionizations per length of path and thus the relation 

of the probability that there was no collision in the mean free path of the ions, and the mean free 

path of the electrons:  

 

𝛼 =
𝑃(𝜆 > 𝜆𝐼)

𝜆𝑒
=
1

𝜆𝑒
exp (−

𝜆𝐼
𝜆𝑒
) =

1

𝜆𝑒
exp (−

𝐸𝐼
𝐸𝑒
). 

It was hereby considered that the energy 𝐸 that a charged particle can between a collision 

depends on the electric field strength 𝜀 and the charge 𝑄: 

 

𝐸 = 𝜆𝑄𝜀. 

For the parallel –plate capacitor we have 𝜀 =
𝑈

𝑑
 where 𝑈 is the applied voltage. As a single 

ionization was assumed 𝑄 is the elementary charge 𝑒. We can now substitute and obtain  

 

𝛼 = 𝐿 ∙ 𝑝 exp (−
𝐿 ∙ 𝑝 ∙ 𝑑 ∙ 𝐸𝐼

𝑒𝑈
). 

Substitution and transforming to 𝑉 we get the Paschen law for the breakdown voltage 

𝑈𝐵(𝑝𝑑) =
𝐿𝑝𝑑𝐸𝐼

𝑒 ln(𝐿𝑝𝑑) − ln [ln (1 +
1
𝛾
)]

 

However, 𝐿 =
𝜋𝑟𝐼

2

𝑘𝐵𝑇
 so we can rewrite this in terms of the ionization saturation and ionization 

energy constants as 

𝑉𝐵(𝑝𝑑) =
𝐵𝑝𝑑

ln(𝐴𝑝𝑑) − ln [ln (1 +
1
𝛾
)]

 

And solving for the minimum 𝑝𝑑 we obtain the minimum breakdown voltage of 

𝑉B,   min =
𝐵

𝐴
𝑒 ln (1 +

1

𝛾
) [4]. 

Assuming the upper region of Paschen’s law is roughly linear gives the following relation  

𝑉𝐵 = 𝛼𝑃𝑅 = 𝐸𝐵𝑅 where 𝐸𝐵 is the electric field required for breakdown.  

Given that some data for California Polytechnic [5] suggests the slope of the linear region in 

carbon dioxide is approximately 𝛼 = 125 𝑉 Torr−1cm−1 and since the Martian atmosphere has 

a pressure of 𝑃 = 4.75 Torr, the slope of the Paschen curve for Martian pressure is  

𝐸𝐵 = 60 𝑘𝑉 m
−1 and the breakdown voltage for a cylindrical precipitator as a function of  it’s 

radius is roughly:  

𝑉𝐵 = 𝛼𝑃𝑅 = 𝐸𝐵𝑅 = (125 𝑉 Torr
−1cm−1)(4.75 Torr)𝑅 = (60𝑘𝑉 m−1)𝑅. 

For Corona operation, a voltage of approximately half the breakdown voltage will be assumed 

𝑉𝑐 =
1

2
𝑉𝑏 =

1

2
𝐸𝑏𝑅 = 𝐸𝑐𝑅 = (30 𝑘𝑉m

−1)𝑅  

Where 𝐸𝐶 is the electric field of the corona. Plugging this into the earlier constraint yields  



√2
𝑞

𝑚
𝐸𝑐𝑅 >

𝑄

𝜋𝑅𝐿
 

And thus  

𝑅3 >
1

2

1

𝐸𝑐

𝑚

𝑞
(
𝑄

𝜋𝐿
)
2

 

Indicating that the radius should increase at a rate greater than the length to maintain the same 

efficiency and thus we can write that the overall efficiency as 

𝜂 = 1 − 𝑒

−

(

 
2𝜋√

2𝑞
𝑚
𝑉𝑅𝐿

𝑄

)

 

. 
 

If the charge density of the gas in the tube is given, we can write in cylindrical coordinates 

1

𝑟

𝜕

𝜕𝑟
 (𝑟
𝜕𝛷

𝜕𝑟
) +

1

𝑟2
𝜕2𝛷

𝜕𝜙2
+
𝜕2𝛷

𝜕𝑧2
= −

𝜌

𝜀0
 

But the electric field does not vary much along the length and along the circumference so the 

equation reduces to  

1

𝑟

𝑑

𝑑𝑟
 (𝑟
𝑑𝛷

𝑑𝑟
) = −

𝜌

𝜀0
. 

The volume charge density in the radial direction can be related to the steady state current 𝐼 

between the inner and outer conductors. The current is assumed entirely due to conduction. The 

volume current density 𝐽 is related to the electric field and charged particles flowing through the 

two conductors via the expression 

𝐽(𝑟) = 𝑏|𝜌(𝑟)|𝐸(𝑟) 

Where b is the mobility of the charged particles, assumed to be constant. Notice that both the 

steady-state volume charge density and electric field can vary with the radial distance from the 

center of the wire. The volume current density is simply related to the steady-state current, by 

multiplying the current density by the area that the current density is passing through:  

𝐼 = 2𝜋𝑟𝐿𝐽 = 2𝜋𝑟𝐿𝑏|𝜌(𝑟)|𝐸(𝑟) 

Where L is the length of the outer conducting tube. Solving for the volume charge density, 

assuming that the volume charge density is positive, and substituting into Poisson’s equation, 

1

𝑟

𝑑

𝑑𝑟
 (𝑟
𝑑𝛷

𝑑𝑟
) = −

1

𝜀0
(

𝐼

2𝜋𝑟𝐿𝑏𝐸(𝑟)
). 

To eliminate the potential function, substitute 𝐸(𝑟) = −
𝑑𝛷

𝑑𝑟
 which gives  

1

𝑟

𝑑

𝑑𝑟
 (−𝑟𝐸(𝑟)) = −

1

𝜀0
(

𝐼

2𝜋𝑟𝐿𝑏𝐸(𝑟)
) 



Or  

𝑑

𝑑𝑟
 (𝑟𝐸(𝑟)) =

𝐼

2𝜋𝜀0𝐿𝑏𝐸(𝑟)
. 

One way of determining the solution of this differential equation is to let 𝑚 = 𝑟𝐸(𝑟):  

𝑑𝑚

𝑑𝑟
=

𝐼𝑟

2𝜋𝜀0𝐿𝑏𝑚
 

Then integrating in the standard way, 

∫ 𝑚𝑑𝑚
𝑚(𝑟)

𝑚(𝑎)

= ∫
𝐼𝑟𝑑𝑟

2𝜋𝜀0𝐿𝑏

𝑟

𝑎

→
1

2
[𝑚2(𝑟) − 𝑚2(𝑎)] =

𝐼

4𝜋𝜀0𝐿𝑏
(𝑟2 − 𝑎2) 

And solving for 𝑚,  

𝑚(𝑟) = √
𝐼

2𝜋𝜀0𝐿𝑏
(𝑟2 − 𝑎2) + 𝑚2(𝑎). 

In terms of the electric field, 

𝐸(𝑟) = √
𝐼

2𝜋𝜀0𝐿𝑏
+ [1 − (

𝑎

𝑟
)
2

]
𝑚2(𝑎)

𝑟2
. 

Since 𝑚(𝑎) = 𝑎𝐸(𝑎) = 𝑎𝐸𝑐, then 

𝐸(𝑟) = √
𝐼

2𝜋𝜀0𝐿𝑏
+ (
𝑎

𝑟
)
2

(𝐸𝑐 −
𝐼

2𝜋𝜀0𝐿𝑏
) . 

The fields generated by the electrodes and space charge are included in this result. Not too close 

to the wire and for larger currents, the field is approximately uniform and independent of 

position: 

𝐸(𝑟) = √
𝐼

2𝜋𝜀0𝐿𝑏
− (

𝑎

𝑟
)
2 𝐼

2𝜋𝜀0𝐿𝑏
+ (

𝑎

𝑟
)
2
𝐸𝑐
2  ≈  √

𝐼

2𝜋𝜀0𝐿𝑏 
  if 

𝐼

2𝜋𝜀0𝐿𝑏
 ≫ (

𝑎

𝑟
)
2 𝐼

2𝜋𝜀0𝐿𝑏
  and 

𝐼

2𝜋𝜀0𝐿𝑏
≫

 (
𝑎

𝑟
)
2
𝐸𝑐
2. Also 𝐸(𝑟) ≈ √

𝐼

2𝜋𝜀0𝐿𝑏
 if 𝑟 ≫ 𝑎 and 𝐼 ≫ (

𝑎

𝑟
)
2
𝐸𝑐
22𝜋𝜀0𝐿𝑏.  

The electric field of the coronal discharge produces a voltage that is roughly constant while the 

voltage input required from the power supply increases exponentially with the ratio of the radius 

of the tube and the radius of the wire. As such we can write that 𝐸(𝑟) =
𝑉

𝑟 ln
𝑅

𝑎

, and from this we 



obtain the relation 𝐸𝑐 =
𝑉𝑐

𝑎 ln(
𝑅

𝑎
)
 for the coronal electric field. This yields the general expression 

for the electric field in total as 

𝐸(𝑟) = √
𝐼

2𝜋𝜀0𝐿𝑏
+ (
𝑎

𝑟
)
2

[(
𝑉

𝑎 ln
𝑅
𝑎

)

2

−
𝐼

2𝜋𝜀0𝐿𝑏
]. 

To determine the voltage of the wire relative to the outer conductor, one must integrate and 

obtain  

𝑉0 ≈ ∫ √
𝐼

2𝜋𝜀0𝐿𝑏
+ (
𝑎

𝑟
)
2

𝐸𝑐
2𝑑𝑟

𝑅

𝑎

= ∫
𝑎

𝑟
𝐸𝑐√

𝐼

2𝜋𝜀0𝐿𝑏
(
𝑟

𝑎
)
2 1

𝐸𝑐
2
+ 1𝑑𝑟

𝑅

𝑎

 

If 𝐸𝑐
2 ≫

𝐼

2𝜋𝜀0𝐿𝑏
. Likewise,  

𝑉0 ≈ ∫
𝑎

𝑟
𝐸𝑐 [1 +

1

2

𝐼

2𝜋𝜀0𝐿𝑏
(
𝑟

𝑎
)
2 1

𝐸𝑐
2
]

𝑅

𝑎

𝑑𝑟 

If 
𝐼

2𝜋𝜀0𝐿𝑏
(
𝑟

𝑎
)
2 1

𝐸𝑐
2 ≪ 1 using the binomial expansion (1 + 𝑥)1/2 ≈ 1 +

𝑥

2
 if |𝑥| ≪ 1. 

Integrating, we get 

𝑉0 = ∫ (
𝑎𝐸𝑐
𝑟
+

𝐼𝑟

4𝜋𝜀0𝐿𝑏𝐸𝑐𝑎
) 𝑑𝑟 

𝑅

𝑎

 

If (
𝑎

𝑟
)
2
𝐸𝑐
2 ≫

𝐼

2𝜋𝜀0𝐿𝑏
, 𝑅 > 𝑎, which solves to  

𝑉0 = 𝑎𝐸𝑐 ln (
𝑅

𝑎
) +

𝐼(𝑅2 − 𝑎2)

8𝜋𝜀0𝐿𝑏𝐸𝑐𝑎
 

If (
𝑎

𝑟
)
2
𝐸𝑐
2 ≫

𝐼

2𝜋𝜀0𝐿𝑏
 since 𝐸𝑐 =

𝑉𝑐

𝑎 ln(
𝑅

𝑎
)
 [6]. 

Additionally, the drop in pressure can be obtained through dimensional analysis or noting that 

the change in pressure is really proportional to the kinetic energy per unit volume and the ratio to 

the diameter over the length of the pipe ∆𝑝 ∝
𝐿

𝐷

1

2
𝜌𝑣2 and incorporating a proportionality factor 

yields the Darcy-Weisbach equation ∆𝑝 = 𝑓𝐷
𝐿

𝐷

1

2
𝜌𝑣2. In reality, the Darcy factor is not a 

constant and is defined as 𝑓𝐷 =
64

𝑅𝑒
 where 𝑅𝑒 is the Reynolds number for predicting the flow of 



the fluid 𝑅𝑒 =
𝜌

𝜇
𝑣𝐷 =

𝑣𝐷

𝜂
 where η is the kinematic viscosity[7]. Given this, and the fact that for 

carbon dioxide the viscosity is 𝜇 = 1.5 ∗ 10−5𝑁 ∗
𝑠

𝑚2
 and 𝜌~0.02

𝑘𝑔

𝑚3
 while our target flow 

velocity is 𝑄 = 0.01333
𝑚3

𝑠 
→ 𝑣 = 3.36

𝑚

𝑠
 then 𝑅𝑒 = 318.808  indicating Laminar flow. The 

entrance length to ensure fully developed flow however, is 𝐿𝑒 = .05𝑅𝑒𝐷 = 1.13𝑚. 

 

 

Laminar flow, or fluid flow of parallel vectors through a pipe of uniform circular cross-section 

means that the flow is steady so that 
𝜕𝑣𝑥

𝜕𝑡
=
𝜕𝑣𝑦

𝜕𝑡
=
𝜕𝑣𝑧

𝜕𝑡
= 0 , the radial and swirl components of the 

fluid velocity are zero, 𝑣𝑟 = 𝑣𝜃 = 0, and the flow is axisymmetric 
𝜕𝑣𝑥

𝜕𝜃
=
𝜕𝑣𝑦

𝜕𝜃
=
𝜕𝑣𝑧

𝜕𝜃
= 0 and fully 

developed 
𝜕𝑣𝑧

𝜕𝑧
= 0. Thus, using cylindrical coordinates the pressure becomes a function of the z 

coordinate where 
𝜕𝑝

𝜕𝑟
= 0 giving 

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑣𝑧

𝜕𝑟
) =

1

𝜇

𝜕𝑝

𝜕𝑧
 where 𝜇 is the dynamic viscosity of the fluid. 

This solves to 𝑣𝑧 =
1

4𝜇

𝜕𝑝

𝜕𝑧
𝑟2 + 𝑐1 ln 𝑟 + 𝑐2 . Since 𝑢𝑧 must be finite at  𝑟 = 0, 𝑐1 = 0, then the 

boundary condition at the edge of the pipe means that 𝑢𝑧 = 0 at 𝑟 = 𝑅 so  𝑐2 = −
1

4𝜇

𝜕𝑝

𝜕𝑧
𝑅2 or 

generally 𝑣𝑧 = −
1

4𝜇

𝜕𝑝

𝜕𝑧
(𝑅2 − 𝑟2) with a maximum velocity at the center of 𝑣𝑧𝑚𝑎𝑥 =

𝑅2

4𝜇
(−

𝜕𝑝

𝜕𝑧
). 

Integrating over the pipe cross section gives the average velocity of  

𝑣𝑧𝑎𝑣𝑔 =
1

𝜋𝑅2
∫ 𝑣𝑧 ∙
𝑅

0

2𝜋𝑟𝑑𝑟 = 0.5𝑣𝑧𝑚𝑎𝑥. 

Assuming that along the length of the pipe L the pressure drops linearly or −
𝜕𝑝

𝜕𝑧
=
∆𝑝

𝐿
, then we 

can substitute this and the maximum velocity into the equation for the average velocity to give 

𝑣𝑧𝑎𝑣𝑔 =
𝐷2

32𝜇

∆𝑝

𝐿
 where D is the diameter of 2R. Rearranging this gives ∆𝑝 =

32𝜇𝐿𝑣

𝐷2
 or ∆𝑝 =

8𝜇𝐿𝑄

𝜋𝑅4
 

where Q is the volumetric flow rate [8]. This can be rewritten as  𝑄 =
𝜋𝑅4∆𝑝

8𝜇𝐿
 or 𝑄 = 𝜋𝑅2𝑣 

which given that we have already derived 𝑅3 >
1

2

1

𝐸𝑐

𝑚

𝑞
(
𝑄

𝜋𝐿
)
2
then by substitution we obtain  

𝑅3 >
1

2

1

𝐸𝑐

𝑚

𝑞
(
𝑅2𝑣

𝐿
)
2

or else simplified as 𝑅 >
1

2𝐸𝑐

𝑚

𝑞

𝑣

𝐿
. From this we can determine that the radius 

should increase at a rate proportional to the rate of flow along the tube. 

Then, the efficiency  

𝜂 = 1 − 𝑒

−

(

 
2𝜋√

2𝑞
𝑚𝑉𝑅𝐿

𝑄

)

 

 

Becomes  

 

𝜂 = 1 − 𝑒

−

(

 
2√
2𝑞
𝑚𝑉𝐿

𝑅𝑣

)

 

 

 



Where we see that the efficiency will decrease as the flow velocity increases because of the 

increasing rate of fluid flow that prevents dust charging by pushing it away from the electric 

field. However, rearranging our inequality to yield  
1

𝑣
>

1

2𝐸𝑐

𝑚

𝑞

1

𝑅𝐿
 or 𝑣 >

2𝐸𝐶𝑞

𝑚
𝑅𝐿. The voltage of 

the corona wire relative to the side of the tube is largely unaffected by the geometry of the tube, 

provided the tube is decently large given that the voltage function plateaus as a function of R and 

L beyond a certain point, leaving the only real variable for the voltage being the input voltage 

from the power supply and thus the current through the gas. Likewise, the ratio of 
𝑞

𝑚
 is by 

Paschen’s law also linearly proportional to the voltage, which indicates that a maximum 

efficiency can be reached for large precipitators that are much longer than wide but have a thin 

corona wire and a low flow velocity.  

 

 However, given that the efficiency is proportional to 
𝐿

𝑅
 and the pressure drop is proportional to 

𝐿

𝑅4
, the pressure drop is lowest when 𝑅 > ln (

𝐿

3
+ 1) and the efficiency is greatest when 𝑅 ≪

𝐿

2
. 

However, the pressure drop remains relatively constant above the curve and the efficiency spikes 

up exponentially as the length increases. As such, the areas between these two curves is the 

prime area of concern but we want the area that is far closer to the logarithmic function than to 

the linear, which is much more practical at larger length scales.    

  
 

The flow velocity appears to be proportional to the cross sectional area of the pipes, so to keep 

the efficiency high, it makes sense to have again, a relatively small radius above but closer to the 

orange logarithmic curve. When combined with a high voltage, this allows for the highest 

combination of efficiency and flow rate. Additionally, to obtain an even higher flow rate, it 

makes sense to not only make a single precipitator and instead use multiple precipitators together 

in a tube to obtain a maximum flow rate overall and a maximum efficiency combination. This is 

particularly important when one factors in the necessity to obtain a low entry length to ensure 

fully developed flow in the precipitator tube.  

 

The fact that the Martian atmosphere saturated with dust is being charged qualifies it as a dusty 

plasma. Dusty plasmas are defined as having nanometer or micrometer size particles embedded 
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in them, and being extremely low temperature overall. The forces acting on the dust in a dusty 

plasma is ultimately determined by electromagnetism, viscosity, gravity, and body forces or  

 𝑚
𝑑𝑣

𝑑𝑡
= 𝑚𝑔 + 𝑞(𝐸 + 𝑣 × 𝐵) − 𝑚𝑣𝑐𝑣 + 𝑓. Which force dominates the behavior of the plasma 

however, depends on the size of the dust particles. The ratio of 
𝑞

𝑚
 ultimately determines the role 

the viscous forces, the gravitational forces, the electromagnetic, and body forces play on the 

system [9]. In order to determine the Martian atmospheric plasma in the Electrostatic 

precipitator’s behavior, we need to find 
𝑞

𝑚
 for Martian dust, which can range in size from around 

0.1 𝜇𝑚 to about 5 𝜇𝑚 in diameter, but typically exist at around 3 𝜇𝑚 in diameter. However, it 

gets more complicated.  Charging of this dust occurs over a real finite experimentally derived 

charging time of 𝜏 =
4𝜀0

𝑁𝑖𝑒𝑏
 where 𝑁𝑖 is the number density of ions and the ion mobility constant is 

𝑏. However, this cannot merely be due to pure collision, because we immediately notice that 

because the mean free path length is defined as 𝜇 =
1

𝑛𝜋𝑑2
 or 𝜇 =

𝑅𝑇

√2𝑁𝐴𝑃𝜋𝑑
2  [10]. Since the 

Martian atmosphere has a pressure of 𝑃 = 4.75 Torr and an average temperature of 218.15 𝐾, 

the number density 𝑛 could be calculated to give a mean free path length of about 9.8𝜇𝑚. As 

such, this length is essentially negligible.  

Therefore, we need to look deeper into plasma physics for an explanation. The Debye length 

arises naturally in thermodynamic description of large systems of mobile charges. In a system 𝑁 

different species of charges, the 𝑗-th species carries charge 𝑞𝑗 and has concentration 𝑛𝑗(𝑟) at 

position 𝑟. According to the so-called “primitive model”, these charges are distributed in a 

continuous medium that is characterized only by its relative static permittivity, 𝜀𝑟. This 

distribution of charges within this medium gives rise to an electric potential 𝛷(𝑟) that satisfies 

Poisson’s equation:  

𝜀∇2𝛷(𝑟) = −∑𝑞𝑗𝑛𝑗(𝑟) − 𝜌𝐸(𝑟)

𝑁

𝑗=1

 

Where 𝜀 ≡ 𝜀𝑟𝜀0, and 𝜌𝐸 is a charge density external (not spatially) to the medium. The mobile 

charges not only establish 𝛷(𝑟) but also move in response to the associated Coulomb force 

−𝑞𝑗∇𝛷(𝑟). If we further assume the system to be in thermodynamic equilibrium with a heat bath 

at absolute temperature 𝑇, then the concentrations of discrete charges 𝑛𝑗(𝑟), may be considered 

to be thermodynamic (ensemble) averages and the associated electric potential to be a 

thermodynamic mean field. With these assumptions, the concentration of the 𝑗-th charge species 

is described by the Boltzmann distribution  

𝑛𝑗(𝑟) = 𝑛𝑗
0 exp(−

𝑞𝑗𝛷(𝑟)

𝑘𝐵𝑇
), 



Where 𝑛𝑗
0 is the mean concentration of charges of species 𝑗. Identifying the instantaneous 

concentrations and potential in the Poisson equation with their mean-field counterparts in 

Boltzmann’s distribution yields the Poisson-Boltzmann equation:  

𝜀∇2𝛷(𝑟) = −∑𝑞𝑗𝑛𝑗
0 exp(−

𝑞𝑗𝛷(𝑟)

𝑘𝐵𝑇
) − 𝜌𝐸(𝑟)

𝑁

𝑗=1

. 

Solutions to this nonlinear equation are known for some simple systems. Solutions for more 

general systems may be obtained in the high temperature (weak coupling) limit 𝑞𝑗𝛷(𝑟) ≪ 𝑘𝐵𝑇 

by Taylor expanding the exponential:  

exp(−
𝑞𝑗𝛷(𝑟)

𝑘𝐵𝑇
) ≈1 −

𝑞𝑗𝛷(𝑟)

𝑘𝐵𝑇
. 

This approximation yields the linearized Poisson-Boltzmann equation 

𝜀∇2𝛷(𝑟) = (∑
𝑛𝑗
0𝑞𝑗
2

𝑘𝐵𝑇

𝑁

𝑗=1

)𝛷(𝑟) −∑𝑞𝑗𝑛𝑗
0(𝑟) − 𝜌𝐸(𝑟)

𝑁

𝑗=1

 

Which is also known as the Debye-Hückel equation: the second term on the right hand side 

vanishes for systems that are electrically neutral. The term in parentheses divided by 𝜀, has the 

units of an inverse length squared and by dimensional analysis leads to the definition of the 

characteristic length scale  

𝜆𝐷 = (
𝜀𝑘𝐵𝑇

∑ 𝑛𝑗
0𝑞𝑗
2𝑁

𝑗=1

)

1
2

 

That commonly is referred to as the Debye-Hückel length. As the only characteristic length scale 

in the equation, it sets the scale for variations in the potential and in concentrations of charged 

species. All charged species contribute to the Debye length in the same way, regardless of the 

sign of their charges. For an electrically neutral system, the Poisson equation becomes  

∇2𝛷(𝑟) = 𝜆𝐷
−2𝛷(𝑟) −

𝜌𝐸(𝑟)

𝜀
. 

To illustrate Debye screening, the potential produced by an external point charge 𝜌𝐸 = 𝑄𝛿(𝑟) is  

𝛷(𝑟) =
𝑄

4𝜋𝜀𝑟
𝑒
−
𝑟
𝜆𝐷 .  

The bare Coulomb potential is exponentially screened by the medium over a distance of the 

Debye length. In a plasma, the background medium may be treated as the vacuum (𝜀𝑟 = 1), and 

the Debye length is  



𝜆𝐷 = √

𝜀0𝑘𝐵
𝑞𝑒
2

𝑛𝑒
𝑇𝑒
+ ∑

𝑧𝑗
2𝑛𝑗
𝑇𝑗

𝑗

 

And the ion term is often dropped due to the fact electrons are much more mobile than ions 

giving  

 

𝜆𝐷 = √
𝜀0𝑘𝐵𝑇𝑒
𝑛𝑒𝑞𝑒

2
[11]. 

When one inserts a Langmuir probe into such a plasma, this can cause a Debye sheath to form. 

The quantitative physics of the Debye sheath is determined by four phenomena:  

Energy conservation of the ions: If we assume for simplicity cold ions of mass 𝑚𝑖 entering the 

sheath with a velocity 𝑢0, having charge opposite to the electron, conservation of energy in the 

sheath potential requires  

1

2
𝑚𝑖𝑢(𝑥)

2 =
1

2
𝑚𝑖𝑢0

2 − 𝑒𝜑(𝑥) 

Where 𝑒 is the positive elementary charge.  

Ion continuity: In the steady state, the ions do not build up anywhere so the flux is everywhere 

the same:  

𝑛0𝑢0 = 𝑛𝑖(𝑥)𝑢(𝑥). 

The Boltzmann relation for the electrons: Since most of the electrons are reflected, their density 

is given by  

𝑛𝑒(𝑥) = 𝑛0 exp(
𝑒𝜑(𝑥)

𝑘𝐵𝑇𝑒
). 

Poisson’s equation: The curvature if the electrostatic potential is related to the net charge density 

as follows:  

𝑑2𝜑(𝑥)

𝑑𝑥2
=
𝑒(𝑛𝑒(𝑥) − 𝑛𝑖(𝑥))

𝜀0
. 

Combining these equations and writing them in terms of the dimensionless potential, position, 

and ion speed,  

𝜒(𝜉) = −
𝑒𝜑(𝜉)

𝑘𝐵𝑇
 



𝜉 =
𝑥

𝜆𝐷
 

ℳ =
𝑢0

(
𝑘𝐵𝑇𝑒
𝑚𝑖

)

1
2

 

We arrive at the sheath equation:  

𝜒′′ = (1 +
2𝜒

ℳ2
)
−
1
2
− 𝑒−𝜒. 

The sheath equation can be integrated once by multiplying by 𝜒′: 

∫ 𝜒′𝜒′′𝑑𝜉1

𝜉

0

= ∫ (1 +
2𝜒

ℳ2
)
−
1
2𝜉

0

𝜒′𝑑𝜉1 −∫ 𝑒−𝜒𝜒′
𝜉

0

𝑑𝜉1. 

At the sheath edge (𝜉 = 0), we can define the potential to be zero (𝜒 = 0) and assume that the 

electric field is also zero (𝜒′ = 0). With these boundary conditions, the integrations yield  

1

2
𝜒′
2
=ℳ2 [(1 +

2𝜒

ℳ2
)

1
2
− 1] + 𝑒−𝜒 − 1. 

This is easily rewritten as an integral in closed form, although one that can only be solved 

numerically. Nevertheless, an important piece of information can be derived analytically. Since 

the left-hand-side is a square, the right-hand-side must also be non-negative for every value of 𝜒,  

in particular for small values.  Looking at the Taylor expansion around 𝜒 = 0, we see that the 

first term that does not vanish is the quadratic one, so that we can require  

1

2
𝜒2(−

1

ℳ2
+ 1) ≥ 0 

Or  

ℳ2 ≥ 1 

Or  

𝑢0 ≥ (
𝑘𝐵𝑇𝑒
𝑚𝑖

)

1
2
. 

This inequality is known as the Bohm sheath criterion. If the ions are entering the sheath too 

slowly, the sheath potential will “eat” its way into the plasma to accelerate them. Ultimately a so-



called pre-sheath will develop with a potential drop on the order of (
𝑘𝐵𝑇𝑒

2𝑒
) and a scale determined 

by the physics of the ion source (often the same as the dimensions of the plasma). Normally the 

Bohm criterion will hold with equality, but there are some situations where the ions enter the 

sheath with supersonic speed.  

Although the sheath equation must generally be integrated numerically, we can find an 

approximate solution analytically by neglecting the 𝑒−𝜒 term. This amounts to neglecting the 

electron density in the sheath, or only analyzing that part of the sheath where there are no 

electrons. For a “floating’ surface, i.e. one that draws no net current from the plasma, this is a 

useful if rough approximation. For a surface biased strongly negative so that it draws the ion 

saturation current, the approximation is very good. It is customary, although not strictly 

necessary, to further simplify the equation by assuming that 
2𝜒

ℳ2 is much larger than unity. Then 

the sheath equation takes on the simple form  

𝜒′′ =
ℳ

(2𝜒)
1
2

. 

As before, we multiply by 𝜒′ and integrate to obtain  

1

2
𝜒′2 = ℳ(2𝜒)

1
2  

Or  

𝜒−
1
4𝜒′ = 2

3
4ℳ

1
2. 

This is easily integrated over 𝜉 to yield  

4

3
𝜒𝑤

3
4 = 2

3
4ℳ

1
2𝑑, 

Where 𝜒𝑊 is the normalized potential at the wall (relative to the sheath edge), and 𝑑 is the 

thickness of the sheath. Changing back the variables  𝑢0 and 𝜑 and noting that the ion current 

into the wall is 𝐽 = 𝑒 𝑛0𝑢0, we have  

𝐽 =
4

9
(
2𝑒

𝑚𝑖
)

1
2 |𝜑𝑤|

3
2

4𝜋𝑑2
. 

This equation is known as Child’s Law. It was first used to give the space-charge-limited current 

in a vacuum diode with electrode spacing 𝑑. It can also be inverted to give the thickness of the 

Debye sheath as a function of the voltage drop by setting 𝐽 = 𝑗𝑖𝑜𝑛
𝑠𝑎𝑡: 



𝐽 =
2

3
(
2𝑒

𝑚𝑖
)

1
4 |𝜑𝑤|

3
4

2√𝜋𝑗𝑖𝑜𝑛
𝑠𝑎𝑡
. 

As such, we see here clearly that as the dust particles act as low potentials relative to the ions and 

electrons and the electrons are far more mobile and energetic, the potential that arises from their 

separation causes the dust particles to act as a negative potential relative to the positive ions and 

attract a sheath of ions of the thickness of the Debye length [12]. This is the mechanism by 

which the dust becomes charged.   

This can be rewritten in terms of our plasma as 𝑑 =
2

3
(
2𝑒

𝑚𝑖
)

1

4
(
𝜀0

𝐽
)

1

2
𝑉
3

4 and given the Bohm 

criterion 𝐽 ≥
1

2
𝑛0𝑒 (

𝑘𝐵𝑇𝑒

𝑚𝑖
)

1

2
, thus 𝑑 =

2

3
(2𝑒)

1

4
√𝜀0

√𝑛0𝑒(𝑘𝐵𝑇𝑒)
1
4

𝑉
3

4 =
(2)

3
4

3
√
𝜀0𝑘𝑏𝑇𝑒

𝑛𝑒𝑞𝑒
2
=
(2)

3
4

3
𝜆𝐷. 

In order to calculate the ratio of 
𝑞

𝑚
,  we approximate by using a spherical shell of carbon dioxide 

molecules outside a spherical dust particle to calculate the number of carbon dioxide ions. 

Because the ionization reaction is CO2 → CO2
+ + 𝑒−, we then multiply it by the elementary 

charge.  

𝑞 =

𝑒4𝜋 (
(2)

3
4

3
𝜆𝐷)

3

3(4𝜋𝑟𝐶𝑂2
3 )

=
(2)

3
4

3

𝑒 (
𝜀0𝑘𝐵𝑇𝑒
𝑛𝑒𝑒

2 )

3
2

3𝑟𝐶𝑂2
3 = (

𝜀0𝑘𝐵𝑇𝑒

𝑛𝑒
)

3
2 (2)

3
4

9𝑒2𝑟𝐶𝑂2
3 . 

 If we approach thermodynamics from a statistical standpoint, we can write the Boltzmann 

constant 𝑘𝐵 =
𝑅

𝑁𝐴
 and thus the number of particles 𝑁 = 𝑛𝑁𝐴 where 𝑛 is the number of moles. 

Therefore 𝑁𝑘𝐵 = 𝑛𝑅 and 𝑃𝑉 = 𝑛𝑘𝐵𝑇.  For impulses of particle collisions since  

∫ 𝐹𝑥(𝑡
′)𝑑𝑡′ 

𝑡+∆𝑡

𝑡

= ∫ 𝑚𝑎(𝑡′)𝑑𝑡′ 
𝑡+∆𝑡

𝑡

= 𝑚𝑣𝑥(𝑡 + ∆𝑡) − 𝑚𝑣𝑥(𝑡) 

Then the average force is  

𝐹𝑥
𝑎𝑣 =

1

∆𝑡
∫ 𝐹𝑥(𝑡

′)𝑑𝑡′ 
𝑡+∆𝑡

𝑡

. 

Assuming flat, rigid walls, a collision means that the x component will be reversed so  

𝑚𝑣𝑥(𝑡 + ∆𝑡) − 𝑚𝑣𝑥(𝑡) = 𝑚|𝑣𝑥| − 𝑚(−|𝑣𝑥|) = 2𝑚|𝑣𝑥|. Thus, 𝐹𝑥
𝑎𝑣∆𝑡 = 2𝑚|𝑣𝑥|. If 𝐿 is the 

length of the gas container, then to go back and forth with 2𝐿 it takes a time of ∆𝑡 =
2𝐿

|𝑣𝑥|
 so 

𝐹𝑥
𝑎𝑣 =

𝑚𝑣𝑥
2

𝐿
. Statistically the total would be  



𝐹𝑥
𝑡𝑜𝑡 =∑

𝑚𝑖𝑣𝑥,𝑖
2

𝐿

𝑁

𝑖=1

 

This of course leads to the idea that  

𝑃 =
1

𝑉
∑𝑚𝑖𝑣𝑥,𝑖

2

𝑁

𝑖=1

 

 

Where 𝑉 = 𝐿3. Averaging the three for x, y, and z gives  

𝑃 =
1

3𝑉
∑𝑚𝑖(𝑣𝑥,𝑖

2 + 𝑣𝑦,𝑖
2

𝑁

𝑖=1

+ 𝑣𝑧,𝑖
2 ) 

Or  

𝑃 =
𝑁

3𝑉
(
1

𝑁
∑𝑚𝑖𝑣𝑖

2

𝑁

𝑖=1

). 

More generally, the average of a value is  

𝑋̅ =
1

𝑁
∑𝑋𝑖

𝑁

𝑖=1

 

Thus, 𝑃𝑉 =
2𝑁

3
(
1

2
𝑚𝑣2̅̅ ̅̅ ̅̅ ) or 

𝑃𝑉

𝑁
=
2

3
(
1

2
𝑚𝑣2̅̅ ̅̅ ̅̅ ) = 𝑘𝐵𝑇. Thus the average kinetic energy of a gas is 

3

2
𝑘𝐵𝑇. This is equivalent to three degrees of freedom with each one at 

1

2
𝑘𝐵𝑇 [13]. Thus, the 

temperature of the electrons can be calculated as 𝑒𝑉0 =
3

2
𝑘𝐵𝑇𝑒  or rearranged as 𝑇𝑒 =

2𝑒𝑉𝐶

3𝑘𝐵
. The number 

density can be calculated from the ideal gas law 𝑃 =
𝑛𝑒𝑅𝑇𝑒

𝑁𝐴
 to obtain 𝑛𝑒 =

𝑁𝐴𝑃

𝑅𝑇𝑒
 or 𝑛𝑒 =

𝑃

𝑘𝐵𝑇𝑒
 Giving   

𝑞 = (
𝜀0
𝑃
)

3
2 8𝑒𝑉𝐶
81𝑟𝐶𝑂2

3  

Where 𝑃 = 4.75 Torr and 𝑟𝐶𝑂2 = 116.3 𝑝𝑚. Given an approximation of a corona voltage of 

(30 𝑘𝑉m−1)𝑅 for a radius of 3.55 𝑐𝑚, we obtain an operating voltage of approximately 

1 𝑘𝑉.This allows us to obtain a charge of 3.07829277 × 10−8  coulombs. This calculation, it 

should be noted, is the charge of a single dust particle, but also this is the charge for a volume of 

carbon dioxide gas.  



The mass of the Martian dust can be approximated from the fact that the Martian soil appears to be a 

combination of hematite, Fe2O3, silica SiO2 and titanium enriched magnetite Fe2+(Fe3+, Ti)2O4. 

Essentially, volcanic basalt on the planet was consistently weathered to the point where magnetide 

powder and quartz powder could convert to fine hematite, which accounts for the red color of Mars, and 

the volumetric majority of the dust in the Martian regolith[14][15]. This would mean that the most fine 

hematite particles of only a few microns would largely be the ones to be in the Martian atmosphere 

accounting for the redness of the Martian sky. Given that hematite has a density of 5.26
𝑔

𝑐𝑚3
,  

𝑚 = 5.26
𝑔

𝑐𝑚3
∗
4

3
𝜋𝑟𝑑

3 = 7.436 × 10−11 𝑔. 

This gives a 
𝑞

𝑚
 ratio of 413.97

𝐶

𝑘𝑔
 showing a dominance of the electric force in the dynamics of the dusty 

plasma.  

Given that for an atmospheric target flow rate of 𝑄𝑎 = 5 𝑠𝑙𝑝𝑚 then 𝑄𝑟 =
760

4.75∗.7
∗  5 𝑠𝑙𝑝𝑚 =

1142.86 𝑙𝑝𝑚 and thus 𝑣 =
𝑄

𝜋𝑅2
. Thus for our existing system, 𝑣 = 4.811

𝑚

𝑠
 and considering that 

𝑉𝑐 = (30 𝑘𝑉m
−1)𝑅,  then we can write for our current radius of 3.55 𝑐𝑚 and our length of ¾ a  

meter, that our efficiency is essentially 1, and increasing the diameter of the radius of the 

electrode wire to 12 times the thickness for stability only decreases the electric field and by 

extension the efficiency to .984 times the original electric field. The natural logarithm relation in 

units of centimeters of a one meter length in our system reveals as well that the radius should be 

above 3.258 𝑐𝑚 to minimize the pressure. For our system, we utilize a 3.55𝑐𝑚 radius to 

optimize performance and minimize pressure loss.  Given this same radius, we should be able to 

go up to 1 meter in length to obtain an optimal collection efficiency and minimal pressure loss 

given that the logarithmic curve at that point would be at a radius of 3.53 𝑐𝑚. 

 

For a precipitator of a smaller length of 
1

4
 of a meter, the radius would be have to be larger than 

2.23 𝑐𝑚 and at a length of 1.25 meters, the radius would have to be 3.75 𝑐𝑚. At a radius of a 

value like 30 𝑐𝑚, the length would have to be around 2 light years long to have the exact same 

charge and pressure drop ratio. Even at a 10 centimeter radius the tube would have to be 800 

meters long. Therefore, the system works the best at small radii.  

  

In an EHD system, a small positively charged electrode can concentrate the charge density and 

by extension the electric field which will then be spread out over a larger negative electrode to 

minimize the chance of arcing.  

 Our Electrostatic precipitator fits this description given the radius of the tube relative to the 

wire. Thus, given this we can determine that the force of voltage driven ions is written as 𝐹 =
𝐼𝑑

𝑘
 

where k is the ion mobility coefficient and d is the distance between the electrodes [16]. The 

potential energy is the integral of the force over space or 𝑈 =
𝐼𝑑2

2𝑘
= 𝑞𝑉 and thus we can write the 



current as 𝐼 =
2𝑘𝑞𝑉

𝑑2
  Because q is proportional to the voltage, we see that the IV curve is going to 

be of the form 𝑦 =
𝑥2

𝑑2
 or 𝐼 = 𝑘𝐸𝑉

2which would indeed indicate a parabolic graph, which is what 

we appear to see in the measurements. Indeed, we can use the EHD calculation to obtain 

𝑘𝐸 =

(
𝜀0
𝑃
)

3
2 8𝑒
81𝑟𝐶𝑂2

3

𝑑2
 

Which given an ion mobility constant for Martian Atmospheric conditions of  

𝑘 = 0.008
𝑚2

𝑉∗𝑠
, can calculate IV curves given a 100 𝜇𝑚 diameter wire and a 7.1 𝑐𝑚 diameter tube 

we obtain a constant of  

𝑘𝐸 = 2.13 ∗ 10
−8
𝐴

𝑉2
 

The Saha equation describes the degree of ionization of this plasma as a function of the 

temperature, density, and ionization energies of the atoms. The Saha equation only holds for 

weakly ionized plasmas for which the Debye length is large. This means that the “screening” of 

the Coulomb charge of ions and electrons by other ions and electrons is negligible. The 

subsequent lowering of the ionization potentials and the “cutoff” of the partition function is 

therefore also negligible. For a gas composed of a single atomic species, the Saha equation is 

written:  

𝑛𝑖+1𝑛𝑒
𝑛𝑖

=
2

𝛬3
𝑔𝑖+1
𝑔𝑖

exp [−
(𝜖𝑖+1 − 𝜖𝑖)

𝑘𝐵𝑇
] 

Where: 

  𝑛𝑖 is the density of atoms in the 𝑖-th state of ionization, that is with 𝑖 electrons removed.   

 𝑔𝑖 is the degeneracy of states for the 𝑖-ions 

 𝜖𝑖 is the energy required to remove 𝑖 electrons from a neutral atom, creating an 𝑖-level ion  

 𝑛𝑒 is the electron density 

 𝛬 is the thermal de Broglie wavelength of an electron 𝛬 = √
ℎ2

2𝜋𝑚𝑒𝑘𝐵𝑇
. 

The expression (𝜖𝑖+1 − 𝜖𝑖) is the energy required to remove the (𝑖 + 1)𝑡ℎ electron. In the case 

where only one level of ionization is important, we have 𝑛1 = 𝑛𝑒 and defining the total density 𝑛 

as 𝑛 = 𝑛0 + 𝑛1, the Saha equation simplifies to:  

𝑛𝑒
2

𝑛 − 𝑛𝑒
=
2

𝛬3
𝑔1
𝑔0
exp [−

𝜖

𝑘𝐵𝑇
] 

Where 𝜖 is the energy of ionization.  The Saha equation is useful for determining the ratio of 

particle densities for two different ionization levels. The most useful form of the Saha equation 

for this purpose is 
𝑍𝑖

𝑁𝑖
=

𝑍𝑖+1𝑍𝑒

𝑁𝑖+1 𝑁𝑒
, where 𝑍 denotes the partition function. The Saha equation can be 

seen as a restatement of the equilibrium condition for the chemical potentials: 𝜇𝑖 = 𝜇𝑖+1 + 𝜇𝑒. 

This equation simply states that the potential for an atom of ionization state 𝑖 to ionize is the 



same as the potential for an electron and an atom of ionization state 𝑖 + 1; the potentials are 

equal, therefore the system is in equilibrium and no net change of ionization will occur. 

Thus we can write the Saha equation for our system as  

𝑛𝑖𝑛𝑒
𝑛𝑎

= 2
𝑔𝑖
𝑔𝑎
(
𝑚𝑒𝑘𝐵𝑇𝑒
2𝜋ℏ2

)

3
2
 exp [−

𝜖𝑖
𝑘𝐵𝑇

] [17]. 

In a plasma, a Coulomb collision rarely results in a large deflection. The cumulative effect of the 

many small angle collisions, however, is often larger than the effect of the few larger angle 

collisions that occur, so it is instructive to consider the collision dynamics in the limit of small 

deflections.  

We can consider an electron of charge −𝑒 and mass 𝑚𝑒 passing a stationary ion of charge +𝑍𝑒 

and much larger mass at a distance 𝑏 with a speed 𝑣. The perpendicular force is (
1

4𝜋𝜀0
)
𝑍𝑒2

𝑏2
 at the 

closest approach and the duration of the encounter is about 
𝑏

𝑣
. The product of these expressions 

divided by the mass is the change in perpendicular velocity:  

∆𝑚𝑒𝑣┴ ≈
𝑍𝑒2

4𝜋𝜀0
(
1

𝑣𝑏
) 

Note that the deflection angle is proportional to 
1

𝑣2
. Fast particles are “slippery” and thus 

dominate many transport processes. The efficiency of velocity-matched interactions is also the 

reason that fusion products tend to heat the electrons rather than (as would be desirable) the ions. 

If an electric field is present, the faster electrons feel less drag and become even faster in a “run-

away” process. In passing through a field of ions with density 𝑛, an electron will have many such 

encounters simultaneously, with various impact parameters (distance to the ion) and directions. 

The cumulative effect can be described as a diffusion of the perpendicular momentum. The 

corresponding diffusion constant is found by integrating the squares of the individual changes in 

momentum. The rate of collisions with impact parameter between 𝑏 and (𝑏 + 𝑑𝑏) is 

𝑛𝑣(2𝜋𝑏 𝑑𝑏), so the diffusion constant is given by  

𝐷𝑣┴ = ∫(
𝑍𝑒2

4𝜋𝜀0
)

2
1

𝑣2𝑏2
 𝑛𝑣(2𝜋𝑏𝑑𝑏) = (

𝑍𝑒2

4𝜋𝜀0
)

2
2𝜋𝑛

𝑣
∫
𝑑𝑏

𝑏
. 

Obviously the integral diverges toward both small and large impact parameters. At small impact 

parameters, the momentum transfer also diverges. This is clearly unphysical since under the 

assumptions used here, the final perpendicular momentum cannot take on a value higher than the 

initial momentum. Setting the above estimate for ∆𝑚𝑒𝑣┴ equal to 𝑚𝑣, we find the lower cut-off 

to the impact parameter to be about  

𝑏0 =
𝑍𝑒2

4𝜋𝜀0

1

𝑚𝑒𝑣
2
. 



We can also use 𝜋𝑏0
2 as an estimate of the cross section for large-angle collisions. Under some 

conditions there is a more stringent lower limit due to quantum mechanics, namely the de 

Broglie wavelength of the electron.  

At large impact parameters, the charge of the ion is shielded by the tendency of electrons to 

cluster in the neighborhood of the ion and other ions to avoid it. The upper cut-off to the impact 

parameter should thus be approximately equal to the Debye length.  

The integral of 
1

𝑏
 thus yields the logarithm of the ratio of the upper and lower cut-offs. This 

number is known as the Coulomb logarithm and is designated by either ln 𝛬 or 𝜆. It is the factor 

by which small-angle collisions are more effective than large-angle collisions. For many plasmas 

of interest it takes on values between 5 and 15. The limits of the impact parameter integral are 

not sharp, but are uncertain by factors on the order of unity, leading to theoretical uncertainties 

on the order of 
1

𝜆
. For this reason it is often justified to simply take the convenient choice  

𝜆 = 10[18]. From these equations we can calculate the resistivity of such a plasma as  

𝜂𝑆 =
𝑍𝑒2√𝑚𝑒2𝜋 ln𝛬𝑒

(4𝜋𝜀0)
23√2𝜋(𝑘𝐵𝑇)

3
2

 

Where 𝛬𝑒 = (
𝑘𝐵𝜀0𝑇𝑒

𝑛𝑒2
)

1

2
(

𝑞1𝑞2

4𝜋𝜀0𝑚12𝑣1
2)
−1
 [19]. Given that the resistivity is related to the resistance 

by the cross sectional area and distance between the electrodes or 𝜂𝑆 = 𝑅 
𝐴

𝑑
, assuming that 𝑍 = 1 

and 𝑚12 =
𝑚𝑒𝑚𝑖

𝑚𝑒+𝑚𝑖
, then we can predict the IV curve behavior for the aforementioned system 

While we do not know the exact degeneracy of the carbon dioxide molecules, and even using a 

dummy value for the cross sectional distance as 20 𝑐𝑚 we see the same behavior for a change in 

current with respect to voltage even though the exact values are off.  

 

This also however assumes that the energy of the system is written 𝐸 =
3

2
𝑘𝐵𝑇𝑒 + 𝐸𝑜𝑡ℎ𝑒𝑟 where 

𝐸𝑜𝑡ℎ𝑒𝑟 = {
𝑐0𝑉 (𝑏𝑒𝑓𝑜𝑟𝑒 𝑡ℎ𝑒 𝑐𝑜𝑟𝑜𝑛𝑎𝑙 𝑜𝑛𝑠𝑒𝑡)

𝑒𝑉𝐶(𝑎𝑓𝑡𝑒𝑟 𝑡ℎ𝑒 𝑐𝑜𝑟𝑜𝑛𝑎𝑙 𝑜𝑛𝑠𝑒𝑡)
 . This would imply that the energy of the ions 

remains relatively unchanged due to the majority of the energy in the plasma being pumped into 
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the electrons and the electrons will collide and recombine with atoms and re-ionize them causing 

the energy of the ions to remain relatively unchanged. The only glaring issue is the difference 

between the curves of 4 orders of magnitude, however, this would be because this model predicts 

too low a resistance and factors affecting the resistance should largely be affected by phenomena 

proportional to the temperature of the electrons, which would largely change the magnitude of 

the predicted curve.  

Even then, for the experimental curve the equation of best fit is approximated as the curve 

𝑘𝐸𝑉
2 − 4.9238𝑉 + 2646.6 where we can see the influence of the EHD formulation at play. As 

such, we can regard the EHD parabolic formulation as an approximation for a much more 

complicated plasma phenomenon.  

Because of this however, the Debye Sheath around the dust particles would determine the charge 

on the dust similar to the charge in an arbitrary volume of gas, this means that we can 

approximate the IV curve for a dusty plasma by multiplying it by the collection efficiency.  
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