Evaluation of Additively Manufactured Metals for Use on Oxygen Systems

Presented By: Jonathan Tylka
NASA Johnson Space Center
White Sands Test Facility
Aerospace Fire History

- **Apollo 1**: 1/27/1967
- **Apollo 13**: 4/14/1970
- **The EMU Fire**: 9/15/1980
- **MIR Fire**: 2/24/1997
- **Cygnus CRS Orb-3**: 10/28/2014
Oxygen Compatibility

• Additive Manufacturing (AM) has been, and will continue to be, used in oxygen systems
• Compatibility studies are a necessity
• Risks if not pursued
 – Equipment Damage, Loss of Mission, Loss of Life
• NASA Centers of Excellence leading efforts
 – White Sands Test Facility (WSTF)
 • Oxygen Compatibility Testing
 – Marshall Space Flight Center (MSFC)
 • Additive Manufacturing
 – NASA Engineering Safety Center (NESC)
 • Statistical Design of Experiments
We must manage the risks...

Maximize more compatible materials
- Ignition resistant
- Burn resistant
- Low damage potential

Minimize ignition mechanisms
- What generates heat in my system?
- Control or eliminate

Utilize good practices
- Implement all aspects of oxygen system safety
Maximize

- Testing determines AM flammability performance
- NASA-STD-6001B Test 17/ ASTM G124
 - Upward flammability test
 - 1/8-in. diameter x 6-in. long
 - Unheated
 - Static Pressure
 - >99.5% Oxygen
 - Magnesium/Pyrofuse Promoter
Preliminary Flammability Testing

- Experiment conducted between:
 - Wrought Inconel 718
 - Selective Laser Melting (SLM) Inconel 718 (IN718)

- Statistically designed, efficient, and randomized

- Test specimens manufactured at MSFC

- Material flammability differences noted
 - Result statistically significant but counterintuitive

- SLM IN718 post-build processes need investigation
 - Stress relief (SR)
 - Hot isostatic pressing (HIP)
 - Solutionizing and aging heat treatments (HT)
Preliminary Flammability Results

- SLM IN718 with/without HIP vs Wrought
- All materials had AMS 5664 HT
Various Nb Precipitate Formation

As-Printed/HT

HIP/HT

Wrought/HT

Void
Axial Burning Interface of HIP Sample
Composite Energy-Dispersive Spectroscopy (EDS)
• Scavenging of flammable constituents in RSZ
 – Cr, Al, Ti, Nb
• Concentration of non/less flammable constituents in RSZ
 – Ni
• Fe remained distributed in BM, RSZ, and O Zones
Flammability Study - Ongoing

- SLM IN718
- Replicate and expand experiment
- Print parts in same build
- Synchronously SR and HT
- Factors
 - HIP (with/without)
 - Effect of HIP temperature excursion
 - Performed in vacuum furnace
 - Furnace cool vs. quench
 - AMS 5664 HT (with/without)
 - Location on build plate
Minimize

- Particle Impact
 - Most common direct igniter of metals
 - Hazards increase with:
 - Pressure, temperature, velocity, flammable particles
 - SLM Components shed metal particles (Lowrey 2016)
Planned Ignition Study

• Subsonic & Supersonic Impacts on SLM IN718
 – Pressures, temperatures, velocities
• Study effect of AM characteristics on ignition sensitivity
• Factors
 – Print direction
 – Surface treatment
 – Post-manufacturing processes (pending flammability results)
 – Particle types

Mounting Material

SLM IN718

1000 μm
Utilize

- AM production
 - Dedicated machine(s) for each material
- Precision cleaning
- AM component/system design recommendations
- Assembly
- Operations
- Maintenance
Long-Term Goals

• Draw additional commercial and government partners
• Test full-scale AM components
• Develop guide for the use of AM in oxygen systems
 – Design
 – Manufacturing
 – Cleaning
 – Assembly
 – Operations
 – Maintenance
Acknowledgements

• WSTF
 – Steven Peralta
 – Kyle Sparks
 – Steven Mathe
 – Paul Spencer
 – Mika Meyers
 – Ilse Alcantara
• MSFC
 – Ken Cooper
 – Brian West
 – Arthur Brown
 – Nikki Lowrey
 – Mark Mitchell
 – Kevin Edwards
• NESC
 – Ken Johnson
 – Susana Harper
 – Fred Juarez
 – Steven Bailey