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The cadence of proximity operations for the OSIRIS-REx mission may have an extra
induced challenge given the potential of the detection of a natural satellite orbiting the
asteroid Bennu. Current ground radar observations for object detection orbiting Bennu
show no found objects within bounds of specific size and rotation rates. If a natural
satellite is detected during approach, a different proximity operation cadence will need to
be implemented as well as a collison avoidance strategy for mission success. A collision
avoidance strategy will be analyzed using the Wald Sequential Probability Ratio Test.

I. Introduction

The Origins Spectral Interpretation Resource Identification Security Regolith EXplorer (OSIRIS-REx)
mission is a NASA near-earth asteroid (NEA) sample return mission to the asteroid Bennu (also known

as 1999 RQ36). OSIRIS-REx is set to launch in late 2016 and will spend about two years in cruise towards
Bennu, a period of time performing proximity operations and finally a capsule sample return back to Earth in
2023. The asteroid Bennu is currently the most accessible carbonaceous asteroid and potentially harzardous
asteroid due to its predicted probability of impacting the Earth relative to other asteroids in the future.1

Bennu has a rapid rotation rate of about 4.29 hrs for a Bennu sidereal day.2 Most NEAs of spheroidal
shapes and rapid rotation rates have been found to be primaries of a binary system. A binary system is
when two objects rotate about a barycenter (the center of mass is contained in neither object). About 16%
of NEAs with diameters larger than 200m may belong to binary systems.3 Therefore, there is a statistical
chance that the asteroid Bennu may have a natural satellite orbiting about itself. Ground-based radar
observations of Bennu in 1999 and 2005 ruled out the possibility of natural satellites with specific diameters
and rotation rates (Please see Table 1).

Table 1. Current radar results showing characteristics of satellites not detected2

Natural Satellites Sizes Not Detected Rotation Rates
Diameter >15 m 1-min
Diameter >5 m 1-hr
Diameter >2 m 24-hr

However, it’s been discovered that some binary systems have primaries spinning with much faster rates
than Bennu.2 The rotation rates of an asteroid determine whether the conditions are feasible for the asteroid
to be a part of a binary system or have a natural satellite rotating about its own central body. The recent
observations between 1999 and 2005 have also not detected any change in the rotation rate nor could we
accurately predict a change in the rotation rate from these observations.2 Bennu is classified as an Apollo
asteroid. Apollo asteroids are Earth crossing NEAs with semi-major axes larger than 1 AU and a perihelion
distance less than Earth’s aphelion (1.017 AU). As of recent, it has been detected that there are 34 Apollo
asteroids with moons or that could be classified as a primary in a binary system.4 There are three asteroids
whose relative sizes are in comparison to Bennu as listed in Table 2.
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Table 2. Known Apollo Asteroids with a Natural Satellite (Moon)

Name of Asteroid Diameter(km) Name of Moon Diameter(km) Separation(km)
1999 DJ4 0.43 ± 0.08 S/2004 0.21 ± 0.05 0.8

2002 AM31 0.45 ± 0.05 S/2012 0.11 1.5
2004 DC 0.36 S/2006 0.21 ± 0.07 0.75 ± 0.045

This warrants a need for a significant collision avoidance strategy for successful proximity operations and
overall mission success. The OSIRIS-REx mission is a complex mission that is composed of several mission
phases from launch to sample return and all the intricate proximity operation phases in between. Therefore,
during approach, it has been predetermined that a natural satellite search campaign would be implemented
to search for, characterize and generate an ephemeris of any potential natural satellite(s). It is the task
of the Flight Dynamics team to determine a method to predict the natural satellite(s), develop a realistic
cadence of obtaining tracking measurements, and define a collision avoidance strategy.

The potential of detecting natural satellites around Bennu could be evaluated in two ways: (1) Based
on current radar observations for size and spin rates; (2) Based on discovered Apollo asteroids of similar
size compared to Bennu. The focal point for this preliminary study will center on a natural satellite of a
much smaller size based on what the recent observations around Bennu were not able to detect as itemized
in Table 1. Most carbonaceous chondritic meteorites like Bennu have densities falling within the range of
2− 3g/cm3 and some even up to 4g/cm3.5 A sample natural satellite is assumed with a density of 3.3g/cm3

and a mass of 2500kg. The cross sectional area is approximately 1m2 with a radius of 0.75m.
Most of the crucial proximity operations of the OSIRIS-REx mission will take place in a terminator orbit.

A terminator orbit’s plane is normal to the sun vector. Since the solar radiation pressure exerts significant
perturbations on spacecraft orbiting Bennu, the terminator orbit is a realm of relative orbit stability for
proximity operations. Under those circumstances, it is also the orbit in which a natural satellite would
potentially reside if one were to exist.

In this preliminary analysis, we simulate a natural satellite orbit trajectory in the terminator plane
slightly off-phase from the OSIRIS-REx spacecraft. Our goal is to develop a decision making scheme on
whether or not to perform a collision avoidance maneuver and at what probabilities will we encounter false
alarm rates and missed detections given a subset of measurements and assumed apriori probabilities.

II. Collision Avoidance Approaches

In space operations, whether it be in Low Earth Orbit (LEO) or interplanetary trajectories, collision
avoidance strategies are typically implemented to enable safe and successful completion of missions. With
the increase in space debris in LEO, numerous approaches have been studied and implemented to maintain
the safe operations of space assets by determining whether a maneuver is necessary or not, given certain
deciding parameters. The collision probability as a function of time, has been widely used as a deciding
parameter on whether a maneuver is necessary or not.

In regions with a high density of space debris (such as LEO), Kessler et al.6 developed a flux model to
statistically model the orbital debris environment. Based on the debris population tracked by the United
States Space Command (USSPACECOM), ground telescope data and measurements of debris impacts on
satellites, the model predicts the number of debris or objects passing through a unit area (flux) as a function
of time. The collision probability is computed from the Kessler model due to the flux of all objects, tracked
and untracked and those that are larger than 10 cm.7 In 2012, the International Space Station (ISS) had
a record number of four collision threats, where the masses of these objects had the capability to inflict
serious damage to the ISS in the event of a collision.7 If a predicted conjunction was to yield a probability of
collision of 1 in 10,000, then a collision avoidance maneuver by the ISS is to be executed unless the maneuver
would lead to an even greater risk to the ISS or its crew.6–8

With the availability of a calculated collision probability, collision avoidance decision making may be
implemented based on whether the collision probability exceeds a given threshold or not. However, if a
maneuver is implemented based on a singular metric, the decision involved does not incorporate other
probabilistic information such as the false alarm and the missed detection.8 In the event of a false alarm, the
collision probability might have met or exceeded the decision-making threshold and an unnecessary maneuver
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would have been implemented that could have been possibly avoided, hence saving fuel and time. On the
other hand, in the event of a missed detection, the costs are much higher than those of the false alarm, in
which a much needed maneuver is not implemented and the event could result in a collision.

Other work involving computing collision probability have delved into using the calculated relative state
of the space objects at the time of closest approach (TCA). A Monte Carlo method is used to generate a
mean and covariance of the relative state that can be used to provide the probability density and hence
determine the collision probability.6–9

The Systems Tool Kit (STK) Collision Avoidance Tool (CAT) implements several algorithms in calculat-
ing the collision probability along with other metrics such as the approach angle, relative speeds and the time
of closest approach.10 In this paper, we implement the Wald Sequential Probability Ratio Test (WSPRT)
that uses sequential state estimates of the collision probability to enable decision making processes beyond
a singular collision probability threshold method. The WSPRT uses a prior determination of the collision
risk that does not involve any measurements, and includes the acceptable false alarm and missed detection
rates that are scenario or mission specific. With available successive measurement updates, the WSPRT
provides a decision making parameter based on the Likelihood ratio. This implementation has been well
developed for the Magnetospheric Multi-Scale (MMS) mission, as detailed in references.8,11 Therefore, in
this application for the OSIRIS-REx mission, a prior collision risk probability needs to be determined as well
as a mission-acceptable false alarm and missed detection rate. For this paper, we will demonstrate various
values of these parameters and how they affect the decision making process.

III. Wald Sequential Probability Ratio test and the Likelihood ratio

For two space objects whose position and velocity vectors are random variables at a given time t, the
true miss distance at the time of closest approach tca can be denoted as r∗ = rca. Given a set of observations
at times tk prior to t∗ = tca, the set of observations (collection of realized random variables) can be denoted
as, Yk = {yk, yk−1, ..., y1}. The joint density is defined as pYk

(yk, yk−1, ..., y1) = pYk
(Yk).

We define a hardbody radius of R, such that if ||r∗|| ≤ R, then the true miss distance is unsafe and is
categorized by the null hypothesis H0. Conversely, the alternate hypothesis H1 applies if ||r∗|| ≥ R, such
that the true miss distance is safe. The likelihood ratio is then calculated as follows:

Λk =
p(Yk|H1)

p(Yk|H0)
(1)

=
p(Yk|||r∗|| ≥ R)

p(Yk|||r∗|| ≤ R)
(2)

If the set B, contains all the states that will result in a collision, the conditional probabilities are calculated
as:12

p(Yk|||r∗|| ∈ B) =
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(r̂∗ − r∗|0)T P̂−1
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Pc|0 is calculated based on the apriori probability of collision and Pc|k is calculated conditioned on the
available measurements to determine the probability of collision at time tca.
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The likelihood ratio Λk at a given time k, guides the decision based on false alarms and missed detection
criteria. Given a probability of a false alarm Pfa and probability of a missed detection Pmd, then limits A
and B are defined;

1−Pfa

Pmd
≥ A and

Pfa

1−Pmd
≤ B (7)

Generally, there exist no analytical methods to determine the Pfa and Pmd rates and so Wald suggests
the use of a targeted P̄fa and targeted P̄md.

13 This in turn redefines the limits A and B as follows:

A =
1−P̄fa

P̄md
and B =

P̄fa

1−P̄md
(8)

If B<Λk<A, the ratio test would suggest to continue seeking additional observations and hence the
decision is inconclusive. Otherwise, if Λk ≤ B then you would accept the null hypothesis and maneuver, and
if Λk ≥ A you would accept the alternate hypothesis.

Therefore, the likelihood ratio can be expressed as:

Λk =
p(Yk|||r∗|| /∈ B)

p(Yk|||r∗|| ∈ B)
(9)

=
1− Pc|k
Pc|k

Pc|0

1− Pc|0
(10)

IV. Scenario Examples

In this section we will look at a simulated example that models a natural satellite orbiting the asteroid
Bennu on a potential collision course with the OSIRIS-REx spacecraft. For most of the proximity operations
around Bennu, the most stable orbit is the terminator orbit that lies in a perpendicular plane to the Sun’s
direction. Since the asteroid is relatively small in size (≈ 500m in diameter), the solar radiation pressure
is one of the largest perturbations around Bennu. Therefore, one could assume that if a natural satellite
were to exist in a stable orbit, it would lie in the terminator plane as well. Similarly, in reference to the
information given in Table 2, the separation distances of the natural satellites/moons to the asteroids are in
a similar order of where we are planning the OSIRIS-REx’s proximity operations to take place.

In this example, we would look at two scenarios. For each scenario, we simulate range, azimuth and
elevation measurements of the natural satellite from the spacecraft to provide state updates at the cadence
of the measurements. The measurements are taken at a 60 second time-step and after every hour the
ephemeris is predicted to the time of closest approach to determine the probability of collision, given the
targeted false alarm and targeted missed detection rates. The measurement noise variance for the range,
azimuth and elevation used are (1 × 10−5)2km2, (1 × 10−3)2rad2, and (1 × 10−3)2rad2 respectively. A
hardbody radius of 10 meters was selected for this analysis and an apriori state covariance with position
and velocity variances of (2/3 ∗ R)2km2 and (1 × 10−6)2(km/s)2 respectively. The initial state vectors are
defined at the epoch 18 Feb 2019 00:00:00.000 UTC. For this preliminary study, a 500 case Monte Carlo run
is implemented in the analysis of the following scenarios.

Since the decision to maneuver is recommended when Λk ≤ B and the conjunction is rendered safe if
Λk > A, the decision thresholds can be written as:8

Pc|k ≥
Pc|0

B + (1−B)Pc|0
= PAlarmc (11)

Pc|k <
Pc|0

A+ (1−A)Pc|0
= PDismissc (12)

where Pc|k =
Pc|0

Λk + (1− Λk)Pc|0
(13)

where A and B are defined in Equation 8. We then observe where the Pc|k values lie with respect to PAlarmc

and PDismissc that are functions of the predetermined values of Pc|0, P̄md and P̄fa.
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A. Scenario 1: State prediction for 8 hrs

During the measurement update period of the first 4 hrs, the range and angles measurements are used
to estimate the position of the natural satellite, and then the states are predicted to the time of closest
approach at 18 Feb 2019 12:00:00.000 UTC. A Pc|0 value of 0.052075 is calculated as defined in Equation 6,
for a hard body radius of 10 meters and assumed initial uncertainties. Figure 1, illustrates the progression
of the simulated natural satellite and the OSIRIS-REx spacecraft over the total 12 hour period up to the
time of closest approach.

Figure 1. Relative position of OSIRIS-REx, True and Measured Natural Satellite positions towards closest
approach

After the measurement updates, the Pc|k (where k = 1, 2, ..., 8 hrs) is calculated at each hour post the 4
hour measurements for the 500 Monte Carlo cases at the time of closest approach. The goal of calculating
the Pc|k at each hour, is to determine if a decision can be made on the point of closest approach before we
reach tca. The decision to maneuver or not can be made based on the predetermined target false alarm,
target missed detection rate, and the limits A and B values that are functions of the likelihood ratio.

In Table 3, a summary of the calculated parameters are presented for four case runs with mixed and
matched targeted false alarm rates and missed detection rates of 0.2 and 0.01. The alarm and dismissal
limits show the boundaries for the Pc|k values that will flag for a required maneuver or a dismissal (i.e. the
conjunction is safe). The resulting parameter values for the four cases differ significantly for some of the
terms, given the large differences in the defined target missed detection and false alarm rates.

In comparing the four cases with varied P̄fa and P̄md values, we observe that the high PAlarmc values of
0.844687 and 0.814638 are attributed to the low targeted false alarm rate (P̄fa) value of 0.01, that can be
deduced from evaluating Equation 8 and Equation 11. This low targeted false alarm rate results into the
low output of the number of sample cases that will trigger an alarm compared to the large numbers when
the targeted false alarm rate used was 0.02. A low targeted missed detection also results in low dismissal
limits as can also be seen in Figure 4 (b) and (c), where the solid black line has a much lower threshold
compared to those of Figure 4 (a) and (d). This is evident in the number of sample cases that resulted to a
“No Decision” output of 137 and 81 for cases (b) and (d) compared to 3 and 24 for cases (a) and (c). This
means that the likelihood ratio is less than A and larger than B, and if possible, more measurements should
be taken to resolve this indecision. Moreover, in Figures 4, it can be seen that using a high targeted false
alarm rate “allows” more sample cases to exceed the PAlarmc trigger and at the same time induce more false
alarm than true alarm sample cases. A low targeted false alarm rate value is a more conservative approach
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that limits false alarm events as was evident in the values for false alarms in Table 3 for the 0.01 targeted
false alarm value.

Additionally, in the cases where the target false alarm rate of 0.2 was used, these cases resulted in a
larger number of alarms triggered, however most of them were also false alarms compared to cases (b) and
(d).

Table 3. Decision making computed parameters for 500 Monte Carlo runs (8 hrs post last measurement
update)

Parameter (a) P̄fa0.2 ,P̄md0.2 (b) P̄fa0.01 ,P̄md0.01 (c) P̄fa0.2 ,P̄md0.01 (d) P̄fa0.01 ,P̄md0.2
Alarm Limit PAlarmc 0.180155 0.844687 0.213794 0.814638

Dismissal Limit PDismissc 0.013548 0.000555 0.000686 0.010976
Alarms 234 77 242 75

Dismissals 263 286 234 344
Hits 19 19 19 19

Misses 481 481 481 481
True Alarms 17 11 17 11
False Alarms 217 66 225 64

True Dismissals 261 284 232 341
False Dismissals 2 2 2 3

No Decisions 3 137 24 81
False Alarm Rate 45.11% 13.72% 46.78% 13.31%

Missed Detection Rate 10.53% 10.53% 10.53% 15.79%

However, with significantly smaller targeted rates, it is possible to reduce the false alarm rate and the
tradeoff would be a possible impact to the time it takes to reach a decision.

Another piece of insight in the decision making scheme would be the predictive uncertainty of the miss
position vector. The position uncertainty shown in Table 4 demonstrates the measure of the proximity of
the natural satellite to the spacecraft at the time of tca. It also shows that at the 4th hour of prediction the
miss distance at tca is the smallest and in the situation that a decision may have not been made yet, this
would definitely suppplement the decision making process to reduce any missed detections.

Table 4. Predictive position uncertainty at tca over the 8 hrs predictive period

Variance in x (km2) at t∗|k Variance in y (km2) at t∗|k Variance in z (km2) at t∗|k
σ2
x∗|1

= 0.0235 σ2
y∗|1

= 0.0073 σ2
z∗|1

= 0.0002

σ2
x∗|2

= 0.0003317 σ2
y∗|2

= 0.0002548 σ2
z∗|2

= 0.0000555

σ2
x∗|3

= 0.0001852 σ2
y∗|3

= 0.0001093 σ2
z∗|3

= 0.0000489

σ2
x∗|4

= 0.0001100 σ2
y∗|4

= 0.0000755 σ2
z∗|4

= 0.0000488

σ2
x∗|5

= 0.0013 σ2
y∗|5

= 0.0043 σ2
z∗|5

= 0.0012

σ2
x∗|6

= 0.0044 σ2
y∗|6

= 0.0033 σ2
z∗|6

= 0.0004

σ2
x∗|7

= 0.0005 σ2
y∗|7

= 0.0045 σ2
z∗|7

= 0.0004

σ2
x∗|8

= 0.0001 σ2
y∗|8

= 0.0019 σ2
z∗|8

= 0.0004

B. Scenario 2: State prediction for 3 hrs

During the measurement update period of the first 4 hrs, the range and angles measurements are used to
estimate the position of the natural satellite, and then the states are predicted to the time of closest approach
at 18 Feb 2019 07:00:00.000 UTC. A Pc|0 value of 0.052075 is also calculated as defined in Equation 6, for
a hard body radius of 10 meters. Figure 3, illustrates the progression of the simulated natural satellite and
the OSIRIS-REx spacecraft over the 7 hour period up to the time of closest approach.

For a set of varying targeted P̄fa and a targeted P̄md values, we calculate the decision limits A and B
and compare these values to the alarm and dismissal thresholds, similar to the first scenario. As shown in
Figure 3, it is clear that the two objects are quickly in conjunction to one another.
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(a) P̄fa = 0.2 and P̄md = 0.2. (b) P̄fa = 0.01 and P̄md = 0.01

(c) P̄fa = 0.2 and P̄md = 0.01 (d) P̄fa = 0.01 and P̄md = 0.2

Figure 2. Cases (a) - (d); Pc|k values for the next 8 hours. The red horizontal line is PAlarm
c and the black

horizontal line is PDismiss
c .
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Figure 3. Relative position of OSIRIS-REx, True and Measured Natural Satellite positions towards closest
approach

We want to determine whether the shorter prediction times affect the resulting decision making pa-
rameters and how do the varied targeted false alarm and missed detection rates perform under these new
constraints. In Table 5, we see that most of the values are similar to Table 3, with the exception of the
“No Decision” parameter. Given the short prediction period it is clear that the WSPRT may need to start
ephemeris prediction much earlier for an improved decision making process. Comparing the false alarm rates
for the targeted false alarm rates of 0.01, we observe that the false alarm rates are slightly higher than those
in Table 3.

The valuable insight obtained here, goes back to knowing how to balance the desired low missed detection
rate and desired high false alarm rate outputs. Just having low targeted false alarm and missed detection rates
does not always equate to a better decision making strategy. However, based on the simulated trajectories,
the output true alarm values were about 2− 3.6% of all 500 Monte Carlo cases and the variances in Table 5,
would imply that the right course of action would be to perform a maneuver. For the OSIRIS-REx mission,
in the event that a natural satellites presents an impedance to proximity operations with stringent cadences,
this is where valuable insight in assigning the targeted false alarm and targeted missed detection rates will
be required. For such cases, where measurements cannot be readily available to track the natural satellites
due to an ongoing science campaign that might also have geometric constraints, it may result in a need to
have ample measurements and predicted ephemeris for the natural satellite before such campaigns.

V. Conclusions and Future Work

This was a preliminary study in determining how a conjunction analysis and decision making algorithm
of a simulated natural satellite and the OSIRIS-REx spacecraft could be implemented. Given a subset
of good sporadic measurement updates, a relatively accurate predicted trajectory can be generated for an
accurate decision making process along with successive Pc|k values and well designed PAlarmc and PDismissc

values. The future work would encompass the use of a representative probability density function along with
a myriad of targeted false alarm and missed detection rates that would better complement the OSIRIS-REx
mission’s collision avoidance decision making strategy. The decision making strategy will highly depend on
the time constraints based on the cadence of proximity operations in a particular phase of operations as well
as the available fuel budget for implementing a collision avoidance maneuver. Both these constraints will be
further pursued in more specific phases and cadences of the OSIRIS-REx proximity operations.
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(a) P̄fa = 0.2 and P̄md = 0.2. (b) P̄fa = 0.01 and P̄md = 0.01

(c) P̄fa = 0.2 and P̄md = 0.01 (d) P̄fa = 0.01 and P̄md = 0.2

Figure 4. Cases (a) - (d); Pc|k values for the next 3 hours. The red horizontal line is PAlarm
c and the black

horizontal line is PDismiss
c .

Table 5. Decision making computed parameters for 500 Monte Carlo runs (3 hrs post last measurement
update)

Parameter (a) P̄fa0.2 ,P̄md0.2 (b) P̄fa0.01 ,P̄md0.01 (c) P̄fa0.2 ,P̄md0.01 (d) P̄fa0.01 ,P̄md0.2
Alarm Limit (PAlarmc ) 0.180155 0.844687 0.213794 0.814638

Dismissal Limit (PDismissc ) 0.013548 0.000555 0.000686 0.010976
Alarms 198 91 195 96

Dismissals 273 236 229 282
Hits 19 19 19 19

Misses 481 481 481 481
True Alarms 18 14 18 15
False Alarms 180 77 177 81

True Dismissals 272 235 228 281
False Dismissals 1 1 1 1

No Decisions 29 173 76 122
False Alarm Rate 37.42% 16.01% 36.80% 16.84%

Missed Detection Rate 5.26% 5.26% 5.26% 5.26%
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Table 6. Predictive position covariance at tca over the 3 hrs predictive period

Variance in x (km2) at t∗|k Variance in y (km2) at t∗|k Variance in z (km2) at t∗|k
σ2
x∗|1

= 0.0955 σ2
y∗|1

= 0.0048 σ2
z∗|1

= 0.0004

σ2
x∗|2

= 0.0026 σ2
y∗|2

= 0.0019 σ2
z∗|2

= 0.0004

σ2
x∗|3

= 0.0005 σ2
y∗|3

= 0.0011 σ2
z∗|3

= 0.0005
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