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Abstract—Low-frequency radio phenomena are due to the 

presence of nonthermal electrons in the interplanetary (IP) 

medium. Understanding these phenomena is important in 

characterizing the space environment near Earth and other 

destinations in the solar system. Substantial progress has been 

made in the past two decades, because of the continuous and 

uniform data sets available from space-based radio and white-light 

instrumentation. This paper highlights some recent results 

obtained on IP radio phenomena. In particular, the source of type 

IV radio bursts, the behavior of type III storms, shock propagation 

in the IP medium, and the solar-cycle variation of type II radio 

bursts are considered. All these phenomena are closely related to 

solar eruptions and active region evolution. The results presented 

were obtained by combining data from the Wind and SOHO 

missions.  
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I.  INTRODUCTION 

 All solar radio bursts are produced by the interaction of 
nonthermal electrons with the plasma and magnetic field in the 
ambient medium. Radio bursts not only provide information on 
the disturbances that cause them, but also on the properties of 
the ambient medium because the radio emission depends on the 
ambient density, magnetic field, and the level of turbulence. 
The mechanisms that accelerate electrons are also able to 
accelerate ions.  Thus, radio bursts of various kinds are also 
useful indicators of solar energetic particle (SEP) events in the 
heliosphere that are important for space weather.  Nonthermal 
electrons injected toward the Sun from the corona produce 
microwave bursts, hard X-rays, and gamma rays. Microwave 
bursts at frequencies similar to those of Global Positioning 
System (GPS) signals can occasionally drown those signals, 
causing communication disruptions [1-2]. The decrease in the 
signal-to-noise ratio in the GPS receivers located on the sunlit 
hemisphere of Earth is proportional to the amplitude of the solar 
microwave burst.  Nonthermal electrons traveling away from 
the Sun along open field lines produce type III radio bursts and 
storms over a wide range of wavelengths [3]. These are 

generally lower energy electrons ( ≤  10 keV). Electrons 

accelerated at the flare site and trapped in moving and stationary 
magnetic structures produce type IV bursts. Electrons that are 
accelerated in shocks driven by coronal mass ejections (CMEs) 
produce type II radio bursts, and hence useful in obtaining 
information on shocks near the Sun and in the IP medium. 
Shocks can form as close as ~1.2 solar radii (Rs) from the Sun 

center [4]. Shocks also accelerate SEPs that can cause a wide 
variety of space weather effects in IPspacecraft, airplanes in 
polar routes, in the polar ionosphere, and in the atmosphere [5]. 
When shocks arrive at Earth, they can cause the sudden 
commencement of geomagnetic storms and energetic storm 
particle events. 

I confine to low-frequency radio bursts because they 
represent disturbances leaving the Sun permanently, and hence 
are highly relevant for space weather [6-7]. The set of issues 
discussed here represent progress made by combining radio and 
white-light observations. The results presented in this paper are 
mainly obtained using data from the Solar and Heliospheric 
Observatory (SOHO) and the Wind missions. In particular, we 
use the images from the Large Angle and Spectrometric 
Coronagraph (LASCO) on board SOHO [8] and the Radio and 
Plasma Wave (WAVES) experiment [9] on board Wind.  

II. LOW-FREQUENCY TYPE IV BURSTS 

The source of energy for the IP type IV bursts has been 

controversial. A flare blast wave propagating behind the 

associated CME, accelerating electrons, and injecting them into 

the CME loops has been suggested as a possibility [10]. 

However, the limited frequency extent of the type IV bursts and 

the directivity of the emission along narrow cones overlying the 

flare site point to the possibility of electrons accelerated at the 

flare site and injected into tall flare loops [6].  There is also 

additional evidence that the low-frequency type IV bursts occur 

only during the decay phase of the associated soft X-ray (SXR) 

flares as shown in Figs. 1 and 2. While the onset is right after 

the SXR peak, the end invariably coincides with the end of the 

SXR flare. The 2005 January 15 event was associated with an 

M8.6 flare from close to the disk center (N16E04). In disk 

events (central meridian distance < 60o) the type IV burst 

appears complete—starting at the highest WAVES frequency, 

descending to a low frequency and receding back to the highest 

frequency. In limb eruptions, as in the case of the 2003 

November 3 event from N08W77 shown in Fig. 2, the type IV 

burst is partial in that only the descending part is observed.   It 

is also worth pointing out that the bursts shown in Figs. 1 and 2 

are not moving type IV bursts. Moving type IV bursts are 

thought to be originating from moving magnetic structures 

associated with CMEs, so the sources must be more extended. 
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The distinct difference in the appearance of spectra in disk-

center and limb events [11] should not be observed if the source 

is extended.  Fig. 3 shows the source locations of a large number 

of type IV bursts observed during solar cycle 23. We see that 

the number of events drops rapidly towards the limb, and the 

few limb events had distinct spectra. These observations 

confirm that the bursts are not extended, but rather confined to 

a narrow cone. 
Fig.1. (left) Source location of the 2005 January 15 type IV burst (N16E04) 
from SOHO. (middle) Radio dynamic spectra from Wind/WAVES showing the 
type IV burst, accompanied by type III and type II bursts. (right) GOES soft X-
ray light curves in the 1-8 Å (upper curve) and 0.5-4 Å (lower curve) channels. 
The vertical red and black lines mark the onset (6:54 UT) and end (8:30 UT) of 
the type IV burst at ~14 MHz. 

Fig.2. (left) Snapshot of the white-light CME from SOHO/LASCO originating 
from N08W77. (middle) Radio dynamic spectra from Wind/WAVES showing 
the type IV burst. Note that the type IV burst looks partial, which is typical of 
limb eruptions. (right) GOES soft X-ray light curves with the onset (10:20 UT) 
and end (11:18 UT) of the type IV burst at ~14 MHz marked. 

 

Fig.3. Source locations of 38 type IV bursts at decameter-hectometric (DH) 
wavelengths observed in cycle 23. Black and red circles represent disk and limb 
events. There were only 5 limb events. 

III. TYPE III STORMS 

      Noise storms represent non-eruptive energy release in 
active regions that result in large clusters of very short duration 
type I and type III bursts [12]. Type I storms typically happen 
at metric wavelengths, while type III storms happen at 
decametric and longer wavelengths [3]. Type I storms transition 
to type III storms at longer wavelengths suggesting that 

electrons gain access to open field lines [13]. One of the 
interesting properties of type III storms is that the number of 
bursts increase as the source active region crosses the central 
meridian. When a large CME erupts in an active region with an 
on-going type III storm, the storm is disrupted but returns in 
several hours [14]. We consider one such active region.   

Fig. 4. A type III storm associated with active region (AR) NOAA 10720.  The 
storm started on 2005 January 14 when the AR was at N12E10 and ended on 
January 20. The five major eruptions that disrupted the storm were 
accompanied by energetic CMEs, type II, type III, and type IV bursts. The 
cessation of the storm can be readily seen by comparing the radio noise to the 
left and right of the intense type III bursts.  

      Figure 4 shows a type III storm starting on 2005 January 14. 
The associated active region emerged on the front side of the 
Sun on 2005 January 11 as a bipolar region (NOAA AR 10720, 
N09E51). The active region grew and attained some complexity 
on January 14 (N13E10), when the type III storm started. The 

type III storm was repeatedly disrupted by CMEs, the last big 
one being the January 20 CME, an extreme event. The 
Wind/WAVES dynamic spectrum in Fig. 4 shows the 
disruptions.  After the January 20 CME, the storm did not come 
back. On January 21, the AR was already at W84.  

Fig. 5. Coronagraph image and the radio dynamic spectrum: (top) on 2005 
January 12 before the start of the type III storm, and (bottom) on 2005 January 
21 after the end of the storm. In the radio spectra, there is no storm; only auroral 
kilometric radiation is observed at frequencies below 1 MHz. The arrows point 

 
 

 

 



to the active region on SOHO’s EUV images superposed on the coronagraph 
images. 

      Fig. 5 shows that the dynamic spectra on January 12 and 
January 21 were free of type III storms. It is not clear if the 
disappearance of the storm is due to the complete 
reconfiguration of the active region, the directivity of the storm, 
or the AR complexity. It appears that all these may be factors.  
This question can be addressed using STEREO observations 
because an active region rotating behind the west limb can be 
tracked by the STA spacecraft. A practical application of the 
storm disruption by a solar eruption is that the associated CME 
must be front-sided and likely to be close to the disk center and 
hence potentially a geoeffective event. 

IV. A NEW SIGNATURE OF CME INTERACTION 

Interaction between CMEs have been recognized in the 
coronagraph field of view with a simultaneous spectral feature 
in the Wind/WAVES dynamic spectrum as an enhancement in 
the type II radio burst [15]. The coronal region probed by the 
two instruments have very good overlap. CME interactions 
have important implications for SEP events [16], CME travel 
time [17], and the CME/shock arrival at Earth [18]. Here we 
report on a new spectral feature in the radio dynamic spectrum 
indicating CME interaction on 2013 May 22. This event was 
well observed [19] and the implication for SEPs has already 
been reported [20].  

Fig. 6. (a) SOHO/LASCO difference image at 14:30 UT showing CME1 and 
CME2 before merger. (b) the resultant CME at 16:06 UT after merger. (c) 
Wind/WAVES dynamic spectrum showing the type II burst. The two vertical 
white lines mark the interval of type II intensification. The slope of the type II 
changed at the end of the intensification as shown by the dotted lines. 

Fig. 6 shows two snapshots of the interacting CMEs and the 
associated type II radio burst. CME1 was the preceding CME 
with a speed of ~700 km/s followed by CME2 with a higher 
speed (~1450 km/s). When CME2 approached CME1, the type 
II burst intensified as is well known [15]. The intensification 
continued for ~1.5 h, until the two CMEs completely merged. 
After the merger, the intensification stopped, but the slope of 
the type II burst suddenly changed from a high value to a low 
value at 16:06 UT. It appears that the resultant CME slowed 
down after the merger to a speed of ~1310 km/s. We compare 
CME kinematics before and after the merger to understand the 
slope change.  

The average frequency (f) drift rate df/dt dropped by an 
order of magnitude from 1.4x10-4 MHz/s before merger to 
1.4x10-5 MHz/s after. For an isolated type II burst emitting at 
the fundamental plasma frequency, one can get the shock speed 
Vs from df/dt and the density scale height L = [(1/n)dn/dr]-1, 
where n(r) is the electron density as a function of the 
heliocentric distance (r): Vs = 2L(1/f)(df/dt). Emission 

frequencies below 1 MHz correspond to the interplanetary 
medium where n~ r-2, so the density scale height L=r/2 and Vs 
= (r/f)(df/dt). At the midpoint of the intensification around 
15:18 UT, f = 0.6 MHz and the CME leading edge was at r = 
18.7 Rs, giving Vs = 3050 km/s. This speed is more than twice 
too large compared to the CME speed. The discrepancy can be 
readily attributed to the fact that the scale height L=9.35 Rs is 
not the true scale height because the density variation is not 
smooth. CME1 was located at a distance of ~4.5 Rs ahead of 
CME2, so the effective scale height becomes 4.5 Rs, which 
gives Vs = 1468 km/s in good agreement with the CME speed. 
After the merger, the resultant CME propagated through an 
undisturbed medium, so the normal scale height applies. At 18 
UT, f=0.3 MHz and the extrapolated CME distance r = 40 Rs. 
Since df/dt = 1.4x10-5 MHz/s, we get Vs = 1306 km/s, again in 
good agreement with the speed of the resultant CME.  

This event illustrates the powerful radio tool to get the shock 
speed in the IP medium, except in cases when a large density 
structure lies ahead of the shock. When the CME observation is 
not available, one can still derive the speed using a density 
model (see e.g., [21]) that can be approximated by the inverse-
square density variation. Some workers have started using the 
dynamic spectra of type II bursts to measure the shock speed 
far away from the Sun with significant success [22].  

 

Fig. 7. Variation of the number of DH type II bursts binned over Carrington 
rotation (CR) periods. The red and blue curves represent the first 80 months of 
cycles 23 and 24, respectively. The black curve represents type II bursts during 
the remaining part of cycle 23. The sunspot number (averaged over CR periods) 
is shown for comparison in grey. 

V. SOLAR CYCLE VARIATION OF IP TYPE II BURSTS 

      Type II bursts in the decameter-hectometric (DH) range are 

good indicators of shocks in the IP medium and hence are useful 

in isolating shock-driving CMEs that are relevant for space 

weather [23].  It is important to note that only a few percent of 

all CMEs drive shocks and therefore isolating these CMEs 

using their ability to drive shocks greatly facilitates space 

weather prediction. For SEP events, one has to have a good 

magnetic connectivity to Earth, so roughly half of the DH type 

II bursts (from the western hemisphere) are associated with SEP 

events at Earth [24]. The sunspot number (SSN) has been 

traditionally used as an important indicator of the severity of 

solar activity and the resulting space weather events. Since 

 



sunspot regions can store and release large amounts of magnetic 

energy, it is natural to expect energetic CMEs originating from 

these regions and hence a good correlation between SSN and 

the number of DH type II bursts. Figure 7 shows the solar cycle 

variation of the number of DH type II bursts binned over 

Carrington rotation periods. There is an overall correlation 

between SSN and the number of DH type II bursts. However, 

there is a clear inter-cycle variation in the relationship: (1) The 

number of DH type II bursts per unit SSN is substantially higher 

in cycle 24 (4.7/SSN compared to 3.7/SSN in cycle 23). (2) 

There is a 40% drop in SSN in cycle 24 from cycle 23 over the 

same epoch, while the number of DH type II bursts dropped 

only by 27% from 217 to 159. DH type II bursts are associated 

with fast (speed ≥ 900 km/s) and wide (width ≥ 60o) or FW 

CMEs. From the online CME data base 

(http://cdaw.gsfc.nasa.gov) we counted 211 FW CMEs over the 

first 80 months of cycle 24. Over the same epoch, there were 

263 FW CMEs in cycle 23. Accounting for the 5-month data 

gap in cycle 23, this number is more likely 280. The drop in the 

number of FW CMEs is therefore 25%, similar to that in the 

number of DH type II bursts. In other words, there is a much 

closer relationship between DH type II bursts and energetic 

CMEs because these CMEs are likely to drive shocks, which 

are responsible for type II bursts. It was recently shown that 

about 13% of cycle-24 large SEP events were associated with 

filament eruptions outside of active regions [25]. All these SEP 

events were associated with FW CMEs and DH type II bursts. 

This explains the discordant behavior of SSN and the number 

of FW CMEs (and hence DH type II bursts).  The higher 

abundance of DH type II bursts (per SSN) in cycle 24 can be 

attributed to the decrease in the ambient Alfven speed in cycle 

24, which makes it easier to form shocks [26]. 

VI. SUMMARY 

We summarized several recent results on type IV bursts, type 

III storms, type II bursts and CME interaction, and the solar 

cycle variation of the number of IP type II bursts. The results 

show that there is a great potential for space weather 

applications from solar radio observations, especially at low 

frequencies. The results presented also demonstrate the power 

of multi-wavelength studies that help bring out the underlying 

physics, which is very important for space weather modeling. 
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