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Collinear ·Earth-Moon libration points have emerged as locations with immediate 
applications. These libration point orbits are inherently unstable and must be maintained 
regularly which constrains operations and maneuver locations. Stationkeeping is· 
challenging due to relatively short time scales for divergence. effects of large orbital 
eccentricity of the secondary body, and third-body perturbations. Using the Acceleration 
Reconnection and Turbulence and Electrodynamics of the Moon's Interaction with the 
Sun (ARTEMIS) mission orbit as a platform, the fundamental behavior of the trajectories 
is explored using Poincare maps in the circular restricted three-body problem. Opera­
tional stationkeeping results obtained using the Optimal Continuation Strategy are 
presented and compared to orbit stability information generated from mode analysis 
based in dynamical systems theory. 

1. Introduction 

Earth-Moon collinear libration points have emerged as 
locations with immediate applications. The selection of 
Earth-Moon (EM) libration point orbit orientations and 
amplitudes, as well as the inherent stationkeeping chal­
lenges, are correlated and achieving the best result is 
nontrivial. Thus, this paper offers the Acceleration Recon­
nection and Turbulence and Electrodynamics of the Moon's 
Interaction with the Sun (ARTEMIS) mission as a platform 
to explore: the theory of EM libration point orbit evolution, 
the required modeling of the libration point orbits, an 
assessment of Earth-Moon libration point orbit stability, 
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the use of Poincare maps to define and, potentially, select 
orbit characteristics, and in-flight stationkeeping strate­
gies. Results using operational data are demonstrated in 
orbit analysis using Poincare maps, and in the implemen­
tation of stationkeeping strategies as applied to ARTEMIS. 

The libration point orbits employed for AKTEMIS are 
inherently unstable and stationkeeping maneuvers applied 
approximately once per week are required. The relatively 
short time scales for divergence. due to the effects of large 
orbital eccentricity of the secondary and solar-gravitational 
and radiation pressure perturbations, prove challenging for 
orbital stationkeeping. However, the Optimal Continuation 
Strategy (OCS), which employs various numerical methods 
to detennine maneuver locations and optimize stationkeep­
ing delta,.V (L\V), successfully minimizes fuel cost during 
ARTEMIS mission operations while offering quality naviga­
tion tracking and maneuver planning scenarios. To examine 
libration point orbit control methods, the operationally 
demonstrated and validated Optimal Continuation Strategy 
is compared with an implementation of Floquet mode 
information as calculated from navigation states. The OCS 
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yields the optimal maneuver locations and AV directions for 
the given mission constraints and it is demonstrated that 
these AV directions compare closely with the stable eigen­
vector directions computed via Floquet analysis. 

2. Background 

2.1. The ARTEMIS mission 

As the first Earth-Moon fibration point orbiting mis­
sion, ARTEMIS serves as the basis (investigative platform) 
for this exploration. More specifically, ARTEMIS is the first 
mission flown to and continuously maintained in orbit 
about both collinear Earth-Moon fibration points, EM L, 
and EM L2 (1-5). Originally, five spacecraft comprised the 
successful Time History of Events and Macroscale Inter­
actions during Substorms (THEMIS) mission. The ARTE­
MIS mission was characterized by the transfer of the two 
outermost TIIEMIS spacecraft from their elliptical Earth 
orbits and, with lunar gravity assists, re-directed them 
to the vicinity of EM L2 via transfer trajectories that 
exploited the Sun-Earth multi-body dynamical environ­
ment. Two identical ARTEMIS spacecraft, named P1 
and P2, entered the space near the Earth-Moon libration 
point orbits in 2010 on August 25 and October 22, 
respectively. Once the Earth-Moon libration point orbits 
were achieved, they were maintained for approximately 

Fig. 1. ARTEMIS Pl libration point orbits, x-y projection. 

a 

eleven months. The P1 spacecraft was inserted into orbit 
in the vicinity of EM L2 and, during the stationkeeping 
phase, was transferred from EM L2 to EM L1• The P2 
spacecraft, however, inserted near EM L2, but immediately 
transferred into an EM L, orbit where it was maintained 
for the remainder of the mission. At the conclusion of the 
stationkeeping phase, both spacecraft departed their EM 
L1 orbits and inserted into elliptical, low inclination lunar 
orbits in 2011 on june 27 and july 17, respectively. 

Various views of the EM L2 and Lt libration point orbits 
associated with the ARTEMIS Pl spacecraft appear in 
Figs. 1 and 2. Similarly, projections of the ARTEMIS P2 
EM L1 Jibration point orbit are depicted in Figs. 3 and 4. 

There were no size or orientation requirements on 
these orbits other than to minimize the libration point 
orbit insertion and stationkeeping AV costs and, ulti­
mately, to allow for transfer into low inclination lunar 
orbits. Both ARTEMIS spacecraft had limited (combined) 
deterministic and statistical stationkeeping A v budgets of 
15 m/s and 12 m/s for P1 and P2, respectively. These AV 
budgets included any libration point orbit stationkeeping 
requirements as well as the transfers between libration 
points and into lunar orbit. The amplitudes of the ARTE­
MIS orbits were governed by the EM L2 orbit insertion 
conditions as dictated by the ballistic Sun-Earth to Earth­
Moon transfers that were utilized. The resulting Pl and P2 
EM L1 orbit y-amplitudes were approximately 60,000 km 

fi&. 3. ARTEMIS P2 libration point orbits, x-y projection. 

b 

\. 

Fig. 2. ARTEMIS P1 fibration point orbits, additional projections. (a) x-z projection and (b) y-z projection. 
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with the Pl L2 orbit y-amplitude near 68,000 km. 
A complete list of the general dimensions for the evolving 
ARTEMIS libration point orbits appears in Table 1. 

2.2. Environmental modeling 

The ARTEMIS P1 and P2 trajectories, like many colli­
near libration point orbits, are dynamically unstable and 
even small perturbations can significantly affect their 
evolutlon. During operations, if any inaccuracies in the 
dynamical model are present, a spacecraft can depart 
from the desired EM Lt or L2 orbit along an unstable 
manifcld, either towards the Moon or along an escape 
trajectory towards the Earth or, even. away from the 
Earth-Moon system. The perturbations required to affect 
these changes are so small that even mis-modeled accel­
erations due to solar radiation pressure or additional 
gravitating bodies can result in departure from the nom­
inal libration point orbit. Thus, for successful mission 
operations, th~ system must be modeled as a true four­
body problem, including the Sun's gravity as an important 
third-body perturbation; accelerations due to lunar 
eccentricity and solar radiation pressure are incorporated 
as wei!. The relative effect of these force terms on the 
evolution of the ARTEMIS P2 trajectory are explored by 
Pavlak and Howell [6). Operationally, the ARTEMIS mis­
sion trajectory design and analysis utilized a full DE421 
Moon-Earth-Sun ephemeris model that also incorporated 
solar radiation pressure acceleration based upon the 
spacecraft mass and cross-sectional area - in this case, a 
simplified cannon ball model was used - and a gravity 
potential model for the Earth with degree and order eight. 
The high-fidelity orbit propagation was conducted using 
both Goddard Space Flight Center's General Mission 
Analysis Tool {GMAT) and AGI's SfK/Astrogator softWare 
package. Successful Jibration point orbit stationkeeping 
operations rely on high-fidelity modeling to accurately 
predict trajectory evolution and, ultimately, to design AV 
maneuvers that ensure the mission objectives are satisfied. 

Table 1 
AIITEMIS libration point orbits parameters. 

Orbit parameter 

Maximt:m x-amplitude (km) 
Maximum y-amplitude (km) 
Maximum z-amplitude (Jan) 
Orbital period (days) 

a 

P1 at L1 

23,656 
58,816 
2387 
13.51 

Pt at L2 

32,686 
63,520 
35198 
15.47 

30,742 
67,710 
4680 
14.19 

b 

3. Theoretical background and Ubration point orbit 
analysis 

While high-fidelity modeling is important for final 
mission design and operations, the drcular restricted three­
body (CR3B) problem is a simplified multi-body model 
that can provide much insight for pre-flight trajectory 
planning and offers a very useful perspective during 
post-mission analysis for ARTEMIS. The libration point 
orbits for the ARTEMIS mission were selected to minimize 
libration point orbit insertion and stationkeeping costs 
and to enable low-cost transfers to low inclination lunar 
orbits; there were no specific size or orientation require­
ments on these orbits. Analysis of the libration point 
orbits from the perspective of the CR3B problem via 
Poincare maps offers further insight into the orbital 
evolution of the ARTEMIS spacecraft trajectories and 
dynamical evidence that demonstrates why the selected 
trajectories were ultimately successful in satisfying the 
mission constraints. 

3.1. The drcular restricted three-body problem 

In the CR3B model (7), the motion of a spacecraft, 
assumed massless, is governed by two gravitationally 
massive primary bodies, the Earth and the Moon each 
represented as a point mass. The orbits of the p;tmary 
bodies are ass•med circular relative to the system bar­
ycenter. A barycentered rotating frame is defined such 
that the rotating x-axis is directed from the Earth to the 
Moon, the z-axis is parallel to the direction of the angular 
velocity of the primary system, and the y-axis completes 
the right-handed triad. The spacecraft state relative to the 
Earth-Moon barycenter is defined in terms of rotating 
coordinates as x = (x,y,z,x,y,z). Note that bold symbols 
denote vector quantities. The mass parameter, p., is 
defined 

(1) 

where m1 and m2 correspond to the mass of the Earth 
and Moon, respectively. The first-order, nondimensional, 
vector equation of motion is 

it =f(1C) (2) 

where the vector field, /(1C), is defined 

/(X)= [x,y,.i,2y+U .. ,- 2x +Uy,UzJ (3) 

The pseudo-potential, U, is defined U(x,y,z) = 1?,-+ f:; + 
~ (x2 + y'l) with the nondimensional Earth-spacec:aft 
and Moon-spacecraft distances written as d1 and d2, 

respectively. The quantities Ux,Uy,Uz represent partial 

l n ;w= 
Fig. 4. ARTEMIS P2 libration point orbits, additional projections. (a) x-z projection and (b) y-z projection. 
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derivatives of U with respect to rotating position coordi­
nates. The single, scalar integral of the motion, known as 
the jacobi constant, C, is represented as C = 2U-v2, where 
v =(x2 +Y2 +z2)t/2. 

Five equilibrium points exist, including three collinear 
librarian points, L1o L2 , and L3, that lie along the x-axis, and 
two equilateral points 4 and Ls. Linear analysis of the 
collinear points [7 -1 0) reveals that they possess a topo­
logical · structure of the type saddle x center x center. 
Thus, asymptotic flow to and away from the libration 
points is possible via the stable and unstable manifolds, 
respectively; periodic and quasi-periodic orbits exist 
within the center subspace. 

3.2. Libration point orbits and stability 

A linear analysis of the flow in the vicinity of the 
libration points provides insight into the evolution of 
Jibration point orbits in the nonlinear CR3B problem. 
Linearization of the equations of motion about the colli­
near libration points allows for states to be·selected such 
that they exist within the center subspace, yielding the 
following variational equations describing orbits relative 
to the libration point: 

ox(t) =Ax cos(yt+t/>). (4) 

oy(t)=Ay sin(yt+if>), 

<5z(t) =Az sin(wt+t/1). 

(5) 

(6) 

where iy, iw represent the complex . eigenvalues asso­
ciated with the local planar and out-of-plane center 
manifolds, respectively; angles ¢, t/1 represent phase 
angles and amplitudes Ax, Ay are related by ·a proportion­
ality constant. Because Y*W, these equations describe 
quasi-periodic motion in the vicinity of the collinear 
points whenever Ax ;eO and Ad•O. Selecting Az=O yields 
the planar, periodic Lyapunov orbits while choosing 
Ax = Ay = 0 produces the periodic vertical orbits. An 
example of a quasi-periodic orbit in the linear model 
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appears in black in Fig. 5(a); note that the orbit is 
linearized relative to the L1 point, but is plotted in a 
Moon-centered view. The z-amplitude evolution appears 
in Fig. 5{b), and illustrates the constant amplit\.lde, Az. 

By adjusting the phase angles ¢, t/1. it is possible to 
enter the libration point orbit in different locations [11 }. 
As an example, the red segments in Fig. 5 represent shifts 
in angles t/> and 1/t that allow for entry into the orbit at a 
desired point within the z-amplitude evolution cycle. 

The variational equations exist within the framework of 
a linear analysis. however. periodic and quasi-periodic orbits 
also exist in the full nonlinear model, desc~bed by Eqs. (2) 
and {3) [12). Several methods exist to compute periodic and 
quasi-periodic libration point · orbits with the inclusion of 
nonlinear effects [ 13-17]. A quasi-periodic orbit in the fully 
nonlinear CR3B problem is depicted in Fig. 6{a); the corre­
sponding z-amplitude evolution appears in Fig. 6(b). 

Clearly, th~ z-amplitude is no longer constant, but cycles 
between high and low z-amplitude modes. By shifting the 
entry phasing in the nonlinear model. it is possible to enter 
the quasi-periodic orbit at a different location and alter the 

· z-amplitude mode. The red highlighted region of Fig. 6 
illustrates how the entry location in the orbit can be shifted 
to enter during the nearly planar mode. The entry clearly 
influences the z-amplitude evolution later along the trajec­
tory and/or the maneuver history required tO maintain 
the orbit · 

To determine the orbit stability properties of a periodic 
libration point orbit, the eigenstructure, i.e.. eigenvectors 
and eigenvalues, is analyzed. The monodromy matrix, M. is 
generated by· integrating the state transition matrix (STM), 
<l>(t2,t1), along with the trajectory state vector for one 
orbital period, T, i.e., M = <P(t + T,t). By computing the 6 
eigenvalues, ..1.1, of the monodromy matrix, M, one can 
determine the stable eigenvalue{s) (lld < 1~ unstable 
eigenvalue{s) (lA.; I > 1 ), and eigenvalues reflecting behavior 
within the center subspace ()..1.1! = 1) associated with a 
particular orbit. An orbit for which all IA.tl = 1 is considered 
marginally stable; those orbits for which at least one pair· of 
stable and unstable eigenvalues exist are termed unstable. 

0 20 40 60 80 100 120 

Time {Days} 

Fi&- s. Quasi-periodic orbit. and correspon.ding :z-ilmplitude evolution in the linear model. (a} Quasi-periodic orbit in linear model, Moon-centered. view 
and (b) :Z-ilmplitude evolution over time. 
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fig. 6. Quasi-periodic orbit in the CR3B model cydes through high and low z-amplltude modes. (a) Quasi-periodic orbit in CR3B model, Moon-centered 
view and (b) z-amplitude evolution· over time. 
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Fig. 7. Poincare map depicting periodic and quasi-periodic libration point orbit structures in the vicinity or L, in the Earth-Moon system for C= 3.080. 
(a ) Poincare map corresponding to crossings of the x-y plane, with sample orbits ft!atured and (b) z-amplitude evolution of selected _orbits. 

3.3. Poincare maps 

For a more complete picture of the available libration 
point orbits at a particular energy level in the CR3B 
·problem, and for potential design options, it is useful to 
employ Poincare maps. Through the use o( a Poincare 
map, an n-dimensional continuous-time system is reduced 
to a discrete-time system of (n-1 )-dimensions. By addi­
tionally constraining the jacobi constant, C, the problem is 
reduced to (n- 2)-dimensions and, thus, the map for the 
CR3B problem is represented in 4-D. To generate a planar 
Poincare map, a surface-:of-section, l:, is defined such that 
l: is transverse to the flow. A commonly used l: is one that 
represents a surface-of-section corresponding to crossings 
of the x-y plane. To compute the map, trajectories are 
integrated using Eqs. (2) and (3), and crossings of l: are 
recorded and displayed. 

Consider the map in Fig. 7 as projected into the x-y 
plane, produced to resemble the maps demonstrated by 

Gomez et al. [18), as well as Kolemen et al. (16) For the 
selected value of C, several periodic orbits exist, including 
a planar Lyapunov orbit (green), a vertical orbit (dark 
blue), and the northern and southern halo orbits. In the 
x- y projection, the halo orbits share the same crossings of 
the map; the northern halo is featured in magenta in 
Fig. 7(a). Utilizing multiple shooting and 30- 50 "stacked 
revolutions" of the periodic orbits, quasi-periodic regions 
of the Poincare map are populated using a numerical 
continuation scheme that begins at the map crossing 
associated with a periodic orbit and steps outward to 
yield successively larger quasi-periodic trajectories. Sur­
rounding the periodic_ vertical orbits are quasi-periodic 
orbits, often denoted lissajous orbits, that exist within 
the center subspace associated with the vertical orbit. A 
sample lissajous trajectory is featured iri cyan. Similarly, 
the quasi-halo orbits lie in the center manifold of the 
central halo orbit. Examples of small and large northern 
quasi:..halo orbits appear in red and orange, respectively. 

Please ate th1s article as: D.C. Folta. et at,, F:arth- Moon hbranon point orbit ~~bonkeeping; The~Jry, modeling. 
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The .<-amplitude evolutions corresponding to the large 
quasi-haio and Lissajous orbits featured in Fig. 7(a) appear 
in Fjg, 7(b ~ The periodic halo and vertical orbits possess 
constont amplitudes Az, whereas the quasi-periodic orbits 
exhibit osdllating values of Az. The crossings of the Ussajous 
orbits are contained within the central region of the map; 
therefore, these orbits do not possess the nearly planar 
modes demonstrated in Fig. 6 that are desired for ARTEMIS­
type libration point trajectories. The quasi-halo orbit cross­
ings occur in the upper and lower regions of the map, thus, 
both high and low z-amplitude modes are facilitated by 
selection of a quasi-halo orbit for this value of C. These 
distinct regions of quasi-periodic behavior are explored in 
detail hy Barden and Howell [19]. 

3.4. ARTEMIS Poincare maps 

To gain insight into the types of orbits selected for 
ARTEMIS. Poincare maps are generated to display the 
specific orbit structures assodated with the Iibration point 
orbit energy levels associated with the P1 and P2 spacecraft 
while in libration point orbits. The AKIEMIS trajectories 
were designed with higher-fidelity ephemeris modeling, 
and the true paths possess discontinuities in the form of 
small A\/ maneuvers. Thus, to analyze the libration point 
orbits using maps, it is desirable to compute orbits in the 
CR3B model that are qualitatively similar to those in the 
A({fEI\IIS mission, as depicted in Figs. 1-4. Analogues to the 
ARTEMIS Pl arid P2 trajectories are computed in the CR3B 
problem as explained by Pavlak and Howell (20]. To 
summarize the approach, an initial guess is developed by 
first "s:acking" planar Lyapunov orbits for a desired numbe·r 
of rev:>lutions about L2 and/or L1• Stable and unstable 
manifdd segments are incorporated to transfer between 
L2 anc: L, libration point orbits and, . ultimately, from the 
vicinit:l of L1 to the Moon. A multiple shooting algorithm is 
then L1:ilized to compute continuous, end-to-end trajec­
tories in the CR3B problem with starting points that are 
consistent with the A({I'MEMIS L2 orbit insertion states 
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obtained from operational navigation data. For each of the 
converged trajectories, the jacobi value, C, is evaluated and 
maps are generated that correspond to the appropriate 
libration point and the specified energy level. Because the 
ARTEMIS orbits and the converged CR38 libration point 
orbits appear qualitatively the same, the results from the 
discussion .of the CR3B orbits can be applied to the actual 
ARTEMIS orbits as well. 

Maps for the Pl L2. Pl Lt. and P2 L1 libration point orbits 
appear in Figs. 8-10, respectively. Oearly, each of the three 
A({I'EMIS libration point orbits possesses x-y plane crossings 
(in red) that lie in the outermost quasi-halo region of the 
map, indicating that each of the A({I'EMIS orbits is a south­
em large quasi-halo orbit To demonstrate the long-term 
evolution of the AR'ffiMIS trajectories, quasi-halo orbits with 
map crossings that lie close to each of the ARI'EMIS·Iibration 
point orbit crossings are selected and appear in figs. 8(b 1 
9(b), and lO(b), in addition to the crossings associated with 
the converged ARI'EMIS CR3B trajectories plotted in red The 
selected quasi-hiJio orbit crossings are highlighted in color 
on the maps, and clearly lie dose to the ARTEMIS spacecraft 
crossings. For both the ARI'EMIS Pl and P2 trajectories, 
recall that the libration point orbit insertion conditions are 
dictated by tile ballistic Sun-Earth to Earth-Moon transfers 
that were utilized and that the orbits were selected, in part. 
to minimize the AV required to transfer between L2 and L1 

and, eventually, into low inclination lunar orbits. Analysis of 
the large quasi-halo orbits demonstrates that these orbits 
su()ply both high and low z-amplitude phases. Note that the 
Ussajous family of quasi-periodic orbits does not provide 
solutions with the near-planar phases that are required 
based on the ARI'EMIS mission constraints. Thus, the 
ARTEMIS P2 L2 trajectory is consistent with the large 
quasi-halo trajectories because they facilitate both a highly 
out-of-plane insertion condition and a nearly planar depar­
ture to the EM Lt side of the Moon. After departing the L2 
quasi-halo within the nearly planar phase, Pl enters a large 
Lt quasi-halo, but employs only the low A.t phase of the orbit 
to allow for the eventual transfer into a low inclination 

s 0 

:r; (x lo4 km) Sf (x 1~ km) 

Fig. 8. Poinc:ari map associated with the ARTEMIS Pl Lz orbit (C=3.10S). (a) Map correspondihg to Pl L2 orbit and (b) Pl L2 orbit (red) with southern 
quasi-h<llo of similar size (purple). (For interpretation of the references to color in this figure caption. the reader is referred to the web version of this 
article.) 
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Fig. 10. Poincare map associated with the ARTEMIS P2 L1 orbit (C=3.080). (a) Map corresponding to P2 L1 orbit and (b) P2 L1 orbit (red) with southern quasi­
halo of sinilar size (blue). (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.) 

lunar orbit. The arrival conditions provided by the. ballistic 
Sun-Eartl;l to Earth-Moon transfer phase for the ARTEMIS P2 
spacecraft possess a much smaller out-of-plane component 
when compared with P1, however, the ·requirement to 
transfer ·to a low inclination lunar orbit remains. Thus, 
ARI'EMIS P2 also exploits the low Az phase of the large L1 

quasi-halo to reduce the AV costs associated with insertion 
into a low inclination lunar orbit. 

4. Ubration point orbit stationkeeping strategies 

A vzriety of stationkeeping strategies have previously 
been investigated for applications in the Sun-Earth system 
and near the Earth-Moon libration points. To be operation­
ally useful for the ARTEMIS mission, a stationkeeping 
strategy must satisfy several conditions: utilize high­
fidelity ephemeris models, yield optimal solutions, and be 

applicable to Earth-Moon L1 or L2 libration point orbits and 
any transfer between them. There were no specific con­
straints on the size or evolution of the ARTEMIS trajectories 
as long as the mission constraints were satisfied so station­
keeping strategies that require strict adherence to a refer­
ence trajectory were not well-suited to this application. 
Ultimately, the stationkeeping. approach selected for the 
ARTEMIS mission was able to incorporate high-fidelity 
modeling of the Earth-Moon dynamical environment and 
accommodate spacecraft: constraints while meeting mission 
objectives. 

4.1. Previous stationkeeping strategies 

Numerous references in the literature offer discussions 
of stability and control for vehicles at both coUinear and 
triangular libration point locations. Hoffman [21) and 

Please cite t.h•s article as· D.C. Folta. et al, Eart:h-Moon.· bbratton pomt orbit statlonkeeping; lheory, mod. eling. , 
a nd operattons, l\cta .Astronauttca (l013), http:,'/c:br dot org it0.1016/J actaastro2 013 01.0~2 · · .. ___ _, 
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Farquhar [22] both generate analysis and discussions for 
stability and control of spacecraft in Earth-Moon collinear 
L1 and L2 locations, respectively, within the context of 
classical control theory and/or linear approximations. 
Renault and Scheeres offer a statistical analysis approach 
[23). Howell and Keeter [24] address the use of Floquet 
theory to select stationkeeping maneuvers to eliminate 
the unstable modes associated with a reference orbit: 
Gomez et al. (25] independently develop and apply the 
Floquet mode approach specifically to translunar libration 
point orbits. Marchand and Howell [26) discuss stability 
including the eigenstructures near the Sun-Earth loca­
tions. Folta and Vaughn (27) present an analysis· of 
statitnkeeping options and transfers between the Earth­
Moon locations, and the use of numerical models that 
include discrete linear quadratic regulators and differen­
tial correctors. Pavlak and Howell [20] demonstrate a 
Iong-cerm orbit maintenance technique incorporating 
multiple shooting. Lastly, Folta et al. (1,2,4), Woodard 
et al. [3), and Sibeck et al. [5J provide both a review of 
various Earth-Moon libration point orbit stationkeeping 
methods, as well as detailed operational stationkeeping 
and transfer results for the ARTEMIS mission. 

4.2. Optimal Continuation Strategy (OCS) 

Based on a comparison of existing libration point orbit 
stationkeeping methods by Folta et al. [1,2] and the 
imposed operational constraints, it was determined that 
the Optimal Continuation Strategy (OCS) offered a flexible 
method for maintaining the ARTEMIS Earth-Moon libra­
tion point orbits. Fundamentally, the OCS is designed to 
maintain the spacecraft in the vicinity of a fibration point 
orbit for t-2 revolutions downstream. The OCS achieves 
this objective by computing maneuvers such that the 
space·:raft satisfies a set of user-defined constraints at 
successive crossings of the x-z plane. Often, these con­
straints are expressed in terms of either x-position or 
x-velccity. At its foundation, the OCS is formulated as a 
two-point boundary value problem and can be solved 
using any appropriate differential corrections scheme. 
Nonlinear optimization such as sequential quadratic pro­
gramming (SQP) can also be incorporated to yield locally 
optimal stationkeeping maneuvers. Initially, the algo­
rithm computes a maneuver to achieve constraints one 
x-z plane crossing downstream. Once a converged_ solu­
tion i~ obtained, the targeting procedure is repeated to 
satisfy constraints at successive future x-z plane crossings 
- typically 3-4 crossings maximum. The OCS is imple­
mented in this manner at all subsequent stationkeeipng 
maneuver locations to maintain a libration point orbit for 
an arbitrary number of revolutions without requiring a 
reference s·olution. 

s. Stationkeeping operations for the ARTEMIS mission 

5.1. ARTEMIS OCS implementation 

The flexible nature of the Optimal Continuation Strat­
egy and the fact that it does not require a reference 
solution, made it well-suited to ARTEMIS stationkeeping 

operations. In this implementation of the OCS, constraints 
on x-velocity were incorporated at x-z plane crossings. 
However. the specific x-velocity targets employed in this 
application differed slightly between the EM L2 and L1 
orbits and were determined empirically during pre­
mission analysis [2). The velocity targets to maintain the 
Pl spacecraft in orbit about EM L2 consisted of two 
different x-velocity targets, depending on the spacecraft 
location in the orbit, i.e., the side closer or farther from the 
Moon. For x-z plane crossings on the far side of the L2 

orbit (farther from the Moon), the 6cs targeted an 
x-velocity -20 mjs with a tolerance of 1 cm/s. Crossing 
targets on the near·side of the L2 trajectory (nearer to the 
Moon), however, required an x-velocity +tO m/s with a 
tolerance of t cm/s. For both the P1 and P2 orbits in the 
vicinity of EM L1, the x-velocity, x, at each x-z plane crossing 
was constrained such that -10 cmj s < x <tO cm; s·. High­
fidelity orbit propagation incorporating the dynamical mod­
els discussed in Section 2.2 was performed using explicit 
Runge-Kutta-Vemer 8(9) and a Dorrnand-Prince 8(9) inte­
grators in GMAT and SfK/Astrogator; respectively. Each 
stationkeeping AV maneuver was minimized using SQP 
optimizers including VFtJAD .from the Harwell library and 
Matlab's fmincon. To ensure that the spacecraft remained in 
the vicinity of the Earth-Moon libration point orbits in the 
near-term, up to four downstream crossings were used 
during the OCS targeting procedure and stationkeeping 
maneuvers were executed twice per orbit - approximately 
once per week. 

5.2. Operational ARTEMIS stationkeeping results 

The OCS was tailored to the ARTEMIS Earth-Moon 
libration point orbits and was used to successfully main­
tain the Pl and P2 spacecraft in the vicinity of EM L1 and 
L2 during the 11 months of mission operations. The 
operational stationkeeping maneuvers performed for the 
ARTEMIS Pt and P2 spacecraft are summarized in Table 2. 
The actual chronological AV histories for the stationkeep­
ing maneuvers executed for both the ARTEMIS Pl and P2 
spacecraft are depicted in Fig. 11. The A V for each 
maneuver for the Pl spacecraft appears in Fig. ll(a), with 
the estimated annual maintenance cost for Pt in L2 and L1 

orbit presented in Fig. 1 t(b) and (c), respectively. Note 
that, for each maneuver, the estimated annual mainte­
nance cost is e~trapolated for one year based on the 
operational ARTEMIS maneuver schedule and the total 
stationkeeping AV cost accumulated to date. The station­
keeping AV history for ARTEMIS P2 in the EM L1 orbit is 
depicted in Fig. 1 t (d). The estimated annual stationkeep­
ing costs for P2 before and after a change in the coeffident 

Table l 
ARTEMIS P1 and P2 stationkeeping results. 

AVcost P1 at L2 P1 at L1 P2 at L1 

Total AV (cm/s) 244.0 155.0 324.0 
Minimum tN (cmfs) 6.96 1.17 133 
Maximum AV (cmfs) 22.64 27.90 37.89 
Mean AV (cmfs) . 13.51 7.21 10.85 
Standard deviation (cm/s) 5.44 7.60 10.31 

Please c1te this attide as: D.C. Folta, et al. Earth-Moon Ubrat1on point otblt stationkeeplng~ theory, modelmg, 
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of reflectivity, C,.. appear in Fig. lt(e) and (0. respectively. 
Initially, a constant value of C,.. obtained from analysis 
conducted before libration point orbit insertion, was utilized 
for ARTEMIS P2 stationl<eeping activities. However, from 
stationkeeping maneuver #22 onward, an updated value of 
Cr based on libration point orbit navigation data was 
implemenred; the predictive capability of the dynamical 
models was improved and, consequently, the stationkeeping 
costs for the remainder of the ARTEMIS P2 trajectory were 
significantly reduced. For both the Pl and P2 spacecraft, the 
general decrease in the estimated annual maintenance cost 
is attributed to the improved modeling and onboard execu­
tion of stationkeeping maneuver thrust arcs. 

A summary of stationkeeping costs for ARTEMIS Pl 
and P2 following libration point orbit insertion, not 
including the axial correction maneuvers to extend the 
mission an additional three months [1 ], are listed in 
Table 3. Recall that the.!\ V costs per year are extrapolated 
based on the operational ARTEMIS maneuver schedule 

T~lel 
ARTEMIS stationkeeping summary. 

.1-Vcost 

Total .1-V (m/s) 
Projected annual .1-V, L2 (m/s) 
Projected annual AV, L1 (m/s) 

ARTEMIS Pt 

3.99 
7.39 
5.28 

ARTEMIS P2 

3.24 
N/A 
5.09 

and costs ·observed during the eleven month mission. 
More detailed ARTEMIS operational stationkeeping d V 
data, including maneuver epoch information, is provided 
by Folta et al. [1]. · 

5.3. AIUEMIS post-mission mode analysis 

From the theoretical perspective, libration point orbit 
stationkeeping research has been ongoing for over a 
decade [23-25,28]. One particular investigation 

Please cite th1s article as: D.C Folta, et 3L, Earth-Moon libratlon poi11t orbit :;tationkeepmg: Theory, modelmg, 
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applicable to this analysis is a collaborative effort 
between Purdue University and Goddard Space Flight 
Center seeks to further investigate potential links 
between operational libration point orbit stationkeeping 
and any orbit stability information available from dyna­
mical systems theory. Analyzing the elgenstructure of a 
libration point orbit, a process denoted here as mode 
analysis, supplies information regarding the orbit stability 
as described in Section 3 .2. Note that while the mono­
dromy matrix. M, as discussed previously, is defined 
specifically for periodic orbits, it c.1n be approximated 
for qu;tsi-periodic trajectories, such as those employed for 
the ARTEMIS spacecraft, by integrating the orbit for 
appro:dmately one revolution. Application of mode ana­
lysis co the ARTEMIS libration point orbits allows for 
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comparison between the theoretical predictions and 
implemented ARTEMIS stationkeeping maneuver direc­
tions computed via the OCS during mission operations. 

Using opera~onal ARTEMIS or~it determination soiutions 
along with the operational stationkeeping maneuvers that 
were actually implemented (designed using the Optimal 
Continuation Strategy), an approximate monodromy matrix 
is computed by generating and propagating the state transi­
tion matrix, 4i(t2,t1), from an initial state for approximately 
one orbital period. The SfM is computed in this analysis by 
first adding a position or velocity perturbation - that is, 
4 x 10-4 km in position and 1 x 10-4 cmJs in velocity - to 
each component of the initial state and integrating the 
trajectory forward in time. Then, a finite-difference STM 
using initial and final state information from numerical 
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Fig. 12. ARTEMIS Pt EM L2 stable and unstable mode directions. (a)x-y projection and (b)x-z projection. 
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integration yields an approximation of the monodromy 
matri>~ The mode infonnation is generated, i.e., the local 
stable and unstable eigenvalues and eigenvectors are com­
puted, and the actual maneuver direction is compared with 
the st&!blefunstable eigenvector information. 

As an example, the stable and unstable mode direc­
tions associated with the ARTEMIS P1 EM L2 orbit over 
one revolution are represented in Fig. 12 in blue and red, 

6 

4 

2 

1 

+ 
... 
0 ..... 
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x (x 104 Ian) 

respectively. The stable and unstable eigenvector direc­
tions are also displayed for one revolution of the P1 EM L1 

orbit in Fig. 13(a) and for the P2 EM L1 orit in Fig. 13(b). 
In Figs. 14 and 15, the stationkeeping AV directions and 
the stable/unstable mode directions corresponding to 
the location of a particular maneuver are plotted for the 
ARTEMIS -P1 and P2 spacecraft in EM Lt orbit. The .angle 
between the AV vector, as expressed in the EM rotating 

Fig. 14. ARTEMIS Pl SK Maneuver #21. 

8 

6 

4 

2 

j 
... 
0 ..... 0 
X .._.. 
;, 

-2 

-4 

-6 

-8 
-5 5 0 

x(x lO''km) 

Fig. 15. ARTEMIS P2 SK Maneuver #4. 

Please ate thls article as: D.C folta, et al , Earth-Moon hbratton pomt orbit statJonkeepmg. ·Theory, modeling, 
.md opel-attons, Acta AstronautJca (2013), htt.p:/tdx.doi org/10 10l6/j.actaastro.2_0_1_3_.0-'-l.O'-. 2_2_· ---'--------l 



12 D.C. Folta et alI Acta Astronauticu 1 (liD) IU-111 

a 
Oil 

30 
0 
~ 25 
" 

\ 

..., 
~ 20 
u 

~ 15 
00 
~ 
u 10 

1iO 
<:1 
< 
~ 

s to· t5 20 25 30 35 

PI Stationkeeping Maneuver Number 

b 
Oil ! 8 

~ 
~ 6 
.!I 
.c 
Jl 4 
s 
u 

1 2 
< 
> 
<l 

5 10 IS 20 25 30 

P2 Stationkceping Maneuver Number 

Fig. 16. Total (blue) and in-plane {red) angles between flY vector and the associated stable mode direction. {a) AIITEMIS.Pt and {b) ARTEMIS P2. 
{for incerpretation of the references to color in this figure c.tption. the reader is referred to the web version of this article.) 

coordinate frame, and the stable mode direction is com­
puted from the dot product of the two vectors and is 
presented for all Pl and P2 stationkeeping maneuvers in 
Fig. 16. The results of this investigation demonstrate that, 
even when spacecraft maneuver direction constraints are 
considered [ 1,2], the ARTEMIS statio~keeping maneuvers 
that were executed during mission operations using the 
Optimal Continuation Strategy are generally aligned with 
the stable eigenvector direction. This is an interesting 
result given that previously developed stationkeeping 
methcds incorporating Floquet analysis typically employ 
stationkeeping maneuvers that align with the unstable 
mode in such a way that the unstable component of the 
error is simply canceled. Perhaps not surprisingly, the 
formulation of the OCS apparently yields ·maneuvers that 
strive to return the vehicle to the vicinity of the path 
dictated by the original libration point orbit insertion 
condition as the most effective approach. Given the 
ARTEMIS post-mission mode analysis, it appears likely 
that stable mode direction information can be incorpo­
rated into existing stationkeeping algorithms to compute 
optimal libration point orbit maintenance maneuvers 
more quickly and efficiently as demonstrated recently 
by Pavlak and Howell [29]. At a minimum, the stable 
mode jirection may serve as an initial guess in an optimal 
strategy. While the full A!UEMIS post-mission mode 
analysis is still being examined, a basic conclusion 
is that maneuver placement along the stable mode direc­
tion can be used to maintain a libration point orbit by 
effectively perturbing the trajectory back into the center 
subspace. 

6. Summary and conclusions 

The ARTEMIS mission utilized high-fidelity modeling and 
an optimal stationkeeping strategy to successfully maintain 
the Pl and P2 spacecraft in Earth-Moon L1 and 12 libration 
point o~bits for eleven months. This research seeks both to 
summarize the results of ARTEMIS mission operations and 
to leverage the circular restricted three-body problem and 
dynamical systems theory in an effort to gain further insight 
into the evolution ofthe ARTEMIS libration point orbits and 
the stationkeeping maneuver design process. The ARTEMIS 
Iibration point orbit insertion conditions were dictated by 

the ballistic Sun-Earth to Earth-Moon transfers that were 
utilized and, consequently, the ARTEMIS Iibration point 
orbits were selected in to enable low-<:ost transfers between 
EM L2 and L1 and, ultimately, into low inclination lunar 
orbit Investigating the long-term behavior of the AtrrEMIS 
Pl and P2 orbits using Poincare maps in the circular 
restricted three-body problem reveals that each of the 
ARTEMIS EM fibration point orbits are. in fact. arcs of large 
quasi-halo orbits. Analysi~ of the large quasi-halo orbits 
available in the CR3B problem demonstrates that these 
orbits include both high and low z-amplitude phases and 
are well-suited for the AtrrEMIS mission because they 
facilitate both highly out-of-plane and nearly planar arrival 
andfor departure ronditions. With an understanding of the 
evolution of the trajectories represented on the Poincare 
map, maps could serve as a useful guide for the selection of 
orbits with specified characteristics in future mission design 
applications. 

While there are a number of stationkeeping strategies 
available that incorporate multi-body dynamics, the actual 
mission applications and constraints must also be consid­
ered. The Optimal Continuation Strategy is a gener~ sta­
tionkeeping algorithm that is capable of computing low-cost 
orbit maintenance maneuvers without a reference trajectory 
and is well-suited for maintaining the ARTEMIS Earth-Moon 
libration point orbits while satisfying mission constraints. 
Targeting goals formulated in terms of x-velocity ~t succes­
sive x-z plane crossings are utilized to maintain the EM L1 
and L2 for 1-2 revolutions downstream. Incorporating opti­
mization. the required stationkeeping 11 V can be minimized 
and has been demonstrated to be only ~5-7 mjs per year 
for the ARlEMIS spacecraft. The optimal stationkeeping 
maneuver directions yielded by the OCS are further ana­
lyzed by completing mode analysis for the ARTEMIS llbra­
tion point orbits, revealing the directions of the stable and 
unstable eigenvectors. Optimized maneuver directions com­
puted via the OCS compare closely with the stable mode 
direction for all st:ationkeeping maneuvers executed, even 
when constraints on the feasible · spacecraft maneuver 
directions are considered. With the Earth-Moon libration 
point orbiting phase of the AKfEMIS mission completed. 
investigation continues on robust strategies to improve 
stationkeeping maneuver design for future libration point 
missions. 
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