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James Webb Space Telescope (JWST)
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Introduction

• Thermal vacuum testing of JWST’s Optical Telescope Element 

(OTE) combined with its Integrated Science Instrument 

Module (ISIM)—OTIS—will occur in NASA JSC’s enormous 

Chamber A

– OTIS Cryo-Vacuum (CV) Test

• ISIM somewhat isolated from certain chamber processes, 

configuration details, etc.

– Faces vertically upward with optical, contaminant access across its 

exposed aperture

• Aft Optics Subsystem (AOS)
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OTIS CV Configuration
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Introduction (cont.)

• At the end of TV testing, there are concerns that particulate 

matter will be stirred up by the chamber repressurization 

process

• Plan is to counteract possible particulate intrusion by first 

implementing an aggregate instrument purge for one hour 

before activating chamber repress system

– Both flows consist of nitrogen gas

• Will this approach be effective?  Overall process ranges from 

molecular flow (free molecule—FM) to continuum conditions 

across nearly nine orders of magnitude in pressure!
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Objective

• Present a series of models designed to describe this process 

using control volume approaches in tandem as the chamber 

repressurizes

– Regarding ISIM overpressure across the AOS aperture

• Apply an approximate energy balance to estimate net velocity

• Use creeping flow analysis to determine the maximum particle 

size that may be lofted, keeping smaller particles from settling 

within ISIM
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Venting Equations

• The interaction between the ISIM volume and TV Chamber A 

will be described by a set of coupled equations

– Conservation of mass statements for equilibrium gas at room temperature

– Mass accumulation rate = (production rate) – (net venting rate)

– ISIM purge vents into chamber; chamber pumps are off for repress

• Early on, ISIM purge venting becomes chamber production rate

– May write in terms of pressure p, gas load Q, and conductance F

• I = ISIM, A=Chamber A
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Venting Equations, Purging Only

• In this example problem, say

– ISIM volume VI = 40 m3

– Chamber A volume VA = 10000 m3

• In first hour, QA = 0, and because VA >>VI
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Gas Load, Conductance

• ISIM purge gas load acts as generation term QI

– Product of upstream pressure and volumetric flow rate G

– Example:  G = 1200 L/hr at a supply pressure of two atm

• Conductance F defined for passages between volumes in terms 

of a venting gas load divided by pressure difference

• Notice [F] = [G], but they are not the same parameter!
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Model Repressurization Phases

• Require different models to analyze various phases, evaluating 

a variety of constraints

– Molecular flow (Free Molecule, FM)

– Continuum flow, sonic constraint

– Subsonic flow

• General

• Small disturbance

• The pressure environment estimated at the end of one phase 

provides initial conditions for the next phase
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Molecular Flow Phase

• FM flow governed by Knudsen number Kn > 1

– Continuum behavior found when Kn < 0.01

• Transition regime occurs in between these two limits

• Ignore transition regime deviations, assume FM conditions exist 

until reaching continuum limit

– Apologies to RGD cohort! 

• For an effective ISIM aperture diameter of 30 cm and an effective 

hard sphere nitrogen molecular diameter of 3.75 angstroms, 

crossover occurs at an ISIM pressure level of 0.017 Torr
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Molecular Flow Solution (Phase 1)

• In FM flow,                          = constant with respect to pressure

• Results show that pressure “skyrockets” through FM and 

transition regimes in 1.5 seconds after purge initiation! 

– Model purge mass flow rate for 507 Torr L/s is less than six grams per sec.

– When ISIM pressure reaches 0.017 Torr, TV Chamber A pressure is only 

about 0.000077 Torr
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Continuum—Sonic Constraint

• Assuming isentropic conditions,

• Mach number M maximizes this ratio at 0.528 when M = 1

– Until the chamber pressure pA can catch up to this level, it will not 

influence the ISIM pressure, and the ISIM venting term may be 

replaced by
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Sonic Phase Solution (Phase 2)

• Substitution into gas load equation for ISIM yields

• The sonic condition holds until pA catches up

• For example conditions

– ISIM pressure quickly settles to a constant 0.036 Torr

– sonic constraint no longer holds at 6.3 minutes after purge initiation 

when pA reaches 0.019 Torr
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Subsonic Conductance Formula

• Beyond 6.3 min., rising chamber pressure begins to influence 

ISIM internal pressure across the vent

• Venting term must be recast in terms of both pI and pA

– Based on relationship between mass flow rate, gas load, and 

conductance, the isentropic, compressible flow expression becomes

– Decide to solve pressure gas load equations numerically
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Subsonic, Purge Only (Phase 3)

• Elapsed time during this phase:

• Calculations were performed out to the one hour mark, beyond 

which the chamber repress valves were opened

– Required a timestep of 0.2 s or less for a stable solution throughout this period

– pI = 0.1851 Torr, pA = 0.1834 Torr
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Chamber Valve Effect

• At the end of the first hour, chamber repress valves are opened 

and the chamber pressure is allowed to increase 0.75 Torr/min

– Much higher than the 5.1e-5 Torr/s (0.003 Torr/min) rate experienced 

by the chamber due to the instrument purge gas load

– This additional effect will drastically decrease any overpressure benefit 

within ISIM produced by the instrument purge

– Will it be overwhelmed (pA > pI)?

• As the pressure difference between the two volumes decreases, 

the timestep in the numerical solution routine must decrease in 

order to maintain stability

• Can simplify effort, gain analytical insight through use of 

small-disturbance approximation
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Small Disturbance Approximations

• Background development presented in previous SPIE meetings

• When                         ,

• Already noted the chamber repress rate >> purge rate such that

• Our coupled set of ODE’s may be replaced by algebraic ones
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Purge + Chamber Repress (Phase 4)

• The ISIM pressure solution becomes

• Remarks

– ISIM overpressure is small, decreases inversely with time

– Equation reveals the necessary condition for ISIM overpressure in numerator
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ISIM Overpressure, Example Conditions
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Net Velocity Calculation

• Wish to convert net overpressure to an aperture velocity for 

keeping particulate matter at bay

• Use conservation of energy equation, assume

– Not concerned with purge-only period (first hour)

– ISIM acts as a reservoir (velocity UI = 0)

– Incompressible, with pI > pA

– Approximately valid at each point in time

– Neglect effects of potential energy differences due to gravity vs. height

• Simplifies to Bernoulli equation
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Creeping Flow Assumption

• For estimating drag effect on tiny particles, creeping flow 

assumption valid for Reynolds number Re < 1

• If Uap = 10 cm/s, creeping flow valid for

– D = 156 microns at one atmosphere

– D = 65 cm at initiation of chamber valve opening!

• Looks like we’re covered
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Critical Lofting Condition

• Apply force balance to particle falling under gravity, counteracted 

by an upward drag force Fs due to Stokes

– Very forgiving of actual particle shape versus sphere with radius R

• Critical condition:

– For an Al particle with D = 100 microns, inertial time constant  = 84 ms

• May rewrite critical condition as
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Critical Particle Size, Example Conditions
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Critical Particle Size Observations

• Surprised to find larger particles may be held aloft at lower 
pressure than at one atmosphere

– Drag force dependent on viscosity but not gas density

– Overpressure decrease with chamber pressure causes net velocity 
decrease, affecting critical particle size counterintuitively

• For example conditions, worst case occurs at one atmosphere

– For particle density similar to H2O, Rcrit = 2.0 microns

– For Al, Rcrit = 1.2 microns

• Since particle fallout distributions are heavily skewed towards 
high concentrations of small elements, it is possible to reject a 
large fraction of a fallout ensemble by number, but this 
ensemble constitutes a relatively small fraction of potential 
area concealable by such distributions

– May be difficult to get large particles to locations for threatening ISIM
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Concluding Remarks

• A series of models were developed to describe net overpressure 

across the ISIM aperture during repressurization spanning

– Molecular flow to continuum conditions

– Sonic, subsonic compressible, and incompressible environments

– Effect of purge counteracting chamber valve influence

• Identified condition for ensuring net outflow from purged, nested volume

• Converted overpressure to flow velocity for applying to force 

balance on chamber particles that may threaten ISIM interior

• Although example conditions did not produce robust results, the 

situation could be remedied by increasing the aggregate purge rate 

(if possible) or slowing down the chamber repressurization rate
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