Establishing and Monitoring an Aseptic Workspace for Building the MOMA Mass Spectrometer

September 1, 2016

Dr. Erin Lalime, SGT/GSFC
Code 546 Contamination and Coatings Engineering Branch
Exomars 2020 & Mars Organic Molecule Analyzer (MOMA):

- **Exomars 2020** - an ESA lander and rover:
 - Scheduled Launch Date: July 2020
 - **Life detection mission**
 - Samples will be collected up to 2m below the surface by a drill

- Mars Organic Molecule Analyzer (MOMA) is an instrument suite on rover
 - **Mass Spectrometer (MS) – NASA/GSFC**
 - Sample Ovens – MPS
 - Gas Chromatograph (GC) – LISA and LATMOS
 - Laser Desorption (LD) - LZH

The ExoMars rover. Credit: ESA
MOMA Hardware bioburden requirements

- Sample path (Ultra Clean Zone): ≤ 0.03 spores/m2
 - Accessible areas:
 - Base of MS
 - Internal surface of pseudo-Ultra Clean Zone (pUCZ)
 - Inaccessible areas:
 - Internal surfaces of Mass Spectrometer (MS)
 - Internal surfaces of Wide Range Pump (WRP)
 - Internal surfaces of Gas Processing System (GPS)

- Surfaces not in contact with sample path: 300-1000 spores/m2
 - Exterior of MS, pUCZ, WRP, GPS,
 - Internal and external surfaces of electronics boxes

Base of Mass Spectrometer

Mass Spectrometer model

16 cm
Establishing clean working space and handling for MOMA-MS

- Three cleanrooms used during build, integration, and testing
 - Aseptic Assembly Cleanroom:
 - Smallest cleanroom
 - Highest and continual bioburden control
 - Integration and Test Cleanroom:
 - Largest MOMA cleanroom, additional ULPA filter tent for sensitive integration steps
 - Bioburden control to be added as needed
 - Vacuum chamber with clean tent: and Mars environment testing:
 - Custom vacuum chamber for Mars environmental testing
 - Bioburden control to be added as needed
Aseptic Assembly Cleanroom

- **Daily**
 - Mop with weekly alternations between 70% IPA and 7.5% H$_2$O$_2$
 - Wipe critical surfaces with sterile 70% IPA
- **Twice a week:**
 - Wipe horizontal surfaces with 100% IPA
 - Replace all garments
 - Run UV-C lamps

- Certified ISO class 7
- Maintains close to ISO 5
Ultraviolet Light treatment of MOMA assembly cleanroom

- Ultraviolet-C (UV-C 100-290nm), 250-260nm is germicidal
 - Kills by crosslinking DNA, which prevents the organisms from faithfully replicating its DNA
- 22,000 µWs/cm² is a sufficient energy dose to kill 99% of most common bacteria and bacterial spores on an exposed surface
- UV-C lamps (253nm) installed in cleanroom ceiling and on wall of assembly clean bench
- UV-C intensity at the floor of the cleanroom was measured at 30 µW/cm², 15 min exposure to reach 22,000 µWs/cm²
Biocidal mopping

- Cleanroom mopped daily (M-F) with either 70% IPA or 7.5% H₂O₂
 - Alternate between IPA and H₂O₂ weekly
 - Selected for biocidal action without leaving a residue

- Different biocidal mechanisms to prevent selecting for resistant organisms
 - 70% IPA denatures proteins
 - 70% IPA is a more effective biocide than 100% IPA
 - 7.5% H₂O₂ disinfects by oxygen radical damage to DNA and proteins
Integration and Testing Cleanroom

- Daily:
 - Vacuum
- Twice a week:
 - Mop with 5% IPA
 - Wipe horizontal surfaces with 100% IPA
 - Replace all garments
- Bioburden control to be instituted as necessary:
 - During sample path exposure post DHMR

- Room certified ISO Class 7
- ULPA tent: ISO Class 4 >99% of the time.
Bioburden Monitoring of Cleanrooms and Hardware

- MOMA Planetary Protection Lab
 - New capability at Goddard Space Flight Center to support MOMA-MS
 - On-site planetary protection assay support allows closer monitoring and faster results

- Lab Development
 - Initial lab setup from July 2014, first MOMA-MS hardware samples processed November 2014
 - “All operations involving the manipulation of sterile items and sample processing shall be performed in laminar flow environments meeting at least Class 100 air cleanliness requirements” -NASA-HDBK-6022
 - Biological safety Cabinet class II type A2
 - Meets ISO Class 5/ Class 100 conditions
 - Provides both product and personnel protection
 - 70% air recirculation, HEPA filtration for cabinet and exhaust

(http://www.labconco.com/)
MOMA Planetary Protection Lab

- **Planetary Protection functionalities:**
 - Rapid assay (ATP) (5min)
 - Testing airborne microbes (4 days)
 - Standard swab assay (4 days)
 - Active air sampling (4 days)
 - Autoclave sterility verification (2 days)

- **Short term capacity expansion:**
 - Wipe assay for larger surface areas
 - DHMR (Dry Heat Microbial Reduction) verification
 - Biodiversity testing
Facility bioburden monitoring

- Bioburden swabs in assembly and I&T cleanrooms
 - General viable microbe screen (not spore specific)
 - Swab a 25cm2 area on work surface with a damp flocked nylon swab
 - Sample transported in 2.5ml sterile water
 - Processed by ESA protocol: ECSS-Q-ST-70-55C
Consistently low viable microbe counts

Aseptic Assembly Cleanroom

Integration and Test Cleanroom
Airborne microbial monitoring

- Passive monitoring: Allowing airborne microbes to settle onto a plate surface
 - Requires review in NASA cleanrooms because of high volatile content of plates
- Active monitoring: pulling air through a filter which is later transferred to a plate
 - Used in MOMA cleanrooms:
 - Almost no growth seen in weekly cleanroom samples
 - Used to monitor immediate environment during highly sensitive activities
ATP rapid Bioburden Assessment

- Pre-wet swab is used to sample a surface, swished in the reactant buffer
 - ATP is the energy carrying molecule in all cell types
 - ATP in the sample will react with the luciferase and luciferin in the buffer and produce light
 - Less than 5 minutes to sample
- Pre-wet swab contains *Chlorhexidine digluconate*
 - Not to be used on sensitive hardware
 - Removable by 70% IPA wiping
Critical work surfaces in assembly cleanroom have very low ATP bioburden.
Determining risk from ATP readings

- Most cleanroom and hardware samples do not have any CFU
 - 99% of environmental microorganisms do not grow in a laboratory setting
 - <15% of cleanroom samples had CFU within 72h
 - RLU and CFU does not directly correlate in environmental samples

Laboratory Experiment

<table>
<thead>
<tr>
<th>RLU Range</th>
<th># Samples</th>
<th># with CFU</th>
<th>% Positive</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-5</td>
<td>146</td>
<td>5</td>
<td>3.42</td>
</tr>
<tr>
<td>6-100</td>
<td>130</td>
<td>30</td>
<td>23.08</td>
</tr>
<tr>
<td>101-500</td>
<td>20</td>
<td>5</td>
<td>25.00</td>
</tr>
<tr>
<td>501-1000</td>
<td>4</td>
<td>3</td>
<td>75.00</td>
</tr>
<tr>
<td>1000-5000</td>
<td>16</td>
<td>16</td>
<td>100.00</td>
</tr>
</tbody>
</table>
Monitoring and maintaining MOMA-MS hardware cleanliness

- Three cleanliness categories:
 - Sample path - <0.03 CFU/m²
 - External non sample path surfaces - <300 CFU/m²
 - Surfaces in closed non-sample path volumes - <1000 CFU/m²
- Non sample path surfaces:
 - Sampled for heat resistant spores using standard swab assay before last access
 - External non sample path surfaces - sampled before shipping
 - Surfaces in closed non sample path volumes - sampled before final closeout
- Sample path
 - Sampled for heat resistant spores using standard swab assay before sterilization
 - Terminal sterilization by Dry Heat Microbial Reduction (DHMR)
 - 110°C bake for 60 hours
 - Any and all post DHMR handling must occur in an aseptic ISO Class 5 workspace
Post DHMR handling and cleanroom maintenance

• All sample path bioburden testing occurs prior to final access before DHMR
 • Post DHMR testing risks recontamination of the surface, and bioburden will be below limit of detection

• Any access to sample path post DHMR must occur in an aseptic ISO Class 5 environment
 • Train all team members interacting with the sample path in aseptic processing
 • Sterile garments, gloves, and tools required
 • Workspace cleaned and tested for bioburden before work, actively monitored with air bioburden sampler
Post DHMR Tool Sterilization

- After precision cleaning and white light inspection, compatible tools will be sterilized
 - Autoclave sterilization: 20 min 121°C, 100 kPa
 - DHMR: 60 min, 165 °C
- Biological indicators used to ensure sterilization
- Tools not compatible with sterilization will not be used in direct contact with sample path surfaces post DHMR
Post DHMR Sterile Tool Handling

- Must only be exposed to ISO Class 5 or cleaner aseptic conditions
- Must be handled wearing sterile gowning
- Only wiped with sterile wipes
- Must only be set on sterile surfaces, sterile fields
- Must be opened by an assistant who is not handling sterile items
- Packages of foil will be sterilized for sterile fields (working surfaces)
- Sterile fields are single use and only for the continuous working session
Post DHMR Biological Contamination Prevention - Personnel

- Personnel management
 - One day Planetary Protection/ aseptic processing training for all personnel working directly with flight hardware
 - Single use sterile cleanroom coveralls, hood, and gloves
 - Two person system to manage sterile tools (pass sterile tool into workspace as needed)

- Sample path work only in an aseptic ISO Class 5 environment that has been verified by bioassay
- No tools that have not been sterilized in contact with Sample path
Summary

• MOMA-MS planetary protection requirements require the establishment of aseptic work spaces during assembly, integration, and testing
 • Three cleanrooms will be used at GSFC
 • Aseptic Assembly cleanroom is currently maintained with additional bioburden control steps: very low level of biological contamination
 • Integration and Testing cleanroom has not had additional bioburden control steps instituted: higher level of biological contamination
• Planetary Protection laboratory at GSFC developed to support onsite bioassay processing
• After DHMR exposures of sample path will be limited
 • Open only in a monitored aseptic work space
 • Handled only with sterile garments, sterile tools
Acknowledgements

- MOMA-MS Contamination Control/Planetary Protection team:
 - Radford Perry
 - Dr. John Canham
 - Lisa Crisp
 - Interns: Lynorra Grant ('14), David Berlin ('15, '16), Jerron Jackson ('16)
- MOMA-MS team and GSFC Code 699 (Planetary Environment Laboratory)
- GSFC Code 546 (Contamination and Coatings Engineering)
- GSFC Code 541 (Materials Engineering)