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Influence of Stationary Crossflow Modulation  
on Secondary Instability  

Meelan M. Choudhari,1 Fei Li,2 and Pedro Paredes3 
NASA Langley Research Center, Hampton, VA, 23681 

A likely scenario for swept wing transition on subsonic aircraft with natural laminar flow 
involves the breakdown of stationary crossflow vortices via high frequency secondary 
instability.  A majority of the prior research on this secondary instability has focused on 
crossflow vortices with a single dominant spanwise wavelength.  This paper investigates the 
effects of the spanwise modulation of stationary crossflow vortices at a specified wavelength 
by a subharmonic stationary mode.  Secondary instability of the modulated crossflow 
pattern is studied using planar, partial-differential-equation based eigenvalue analysis.  
Computations reveal that weak modulation by the first subharmonic of the input stationary 
mode leads to mode splitting that is particularly obvious for Y-type secondary modes that 
are driven by the wall-normal shear of the basic state.  Thus, for each Y mode corresponding 
to the fundamental wavelength of results in unmodulated train of crossflow vortices, the 
modulated flow supports a pair of secondary modes with somewhat different amplification 
rates.  The mode splitting phenomenon suggests that a more complex stationary modulation 
such as that induced by natural surface roughness would yield a considerably richer 
spectrum of secondary instability modes.  Even modest levels of subharmonic modulation 
are shown to have a strong effect on the overall amplification of secondary disturbances, 
particularly the Z-modes driven by the spanwise shear of the basic state.  Preliminary 
computations related to the nonlinear breakdown of these secondary disturbances provide 
interesting insights into the process of crossflow transition in the presence of the first 
subharmonic of the dominant stationary vortex. 

Nomenclature 
Ainit =    initial amplitude of crossflow instability mode or secondary instability mode, measured in terms of  

peak chordwise velocity perturbation and normalized with respect to freestream velocity 
C =    wing chord length normal to the leading edge 
f =    frequency of instability oscillations (Hz) 
M =    freestream Mach number 
N =    N-factor (i.e., logarithmic amplification ratio) of linear crossflow instability or secondary instability 
(m,n) =    temporal and spatial Fourier mode number pair 
(u,v,w) =  Cartesian velocity components aligned with (x,y,z) axes 
X =    chordwise coordinate in direction perpendicular to leading edge 
Y =    wall-normal coordinate 
Z =    spanwise coordinate, i.e., the coordinate parallel to airfoil leading edge 
λ =    spanwise wavelength of crossflow instability 
 
Abbreviations 
NPSE =  nonlinear parabolized stability equations 
DNS =  direct numerical simulations 
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I. Introduction 
HE economic and environmental benefits of laminar flow technology via reduced fuel burn of subsonic and 
supersonic aircraft cannot be realized without reducing the uncertainty in drag prediction in general and 

transition prediction in particular. Transition research under NASA’s Transformational Tools and Technologies 
Project seeks to develop a validated set of variable fidelity prediction tools with known strengths and limitations, so 
as to enable sufficiently accurate transition prediction and practical transition control for future vehicle concepts.  
The purpose of the present research is to investigate transition mechanisms involving a spanwise modulated train of 
stationary crossflow vortices of a specified dominant wavelength, which have received little attention in comparison 
with stationary vortices with a single spanwise wavelength.      
 In general, a swept wing boundary layer can be susceptible to various types of primary instabilities such as 
attachment line instability1, stationary and traveling crossflow modes, and Tollmien-Schlichting (TS) waves.  
Regardless of which mode dominates the primary amplification stage, the other, subdominant modes may play a role 
during the nonlinear stage, and hence, influence the onset of transition.   A likely scenario during the flight of swept-
wing aircraft involves the breakdown of stationary crossflow vortices via high frequency secondary instability.1-6 
Transition prediction based on the linear amplification of  secondary instabilities accounts for the nonlinear 
evolution of crossflow vortices and, unlike the predictions based on vortex amplitudes themselves, provides an 
adequately sensitive measure to predict the onset of transition.  Application of this technique to the flight experiment 
by Carpenter et al.7 is described by Li et al.8  Nonlinear development of the secondary instability modes of stationary 
vortices in the boundary layer flow over a transport relevant infinite-swept wing configuration has also been 
addressed using nonlinear parabilized stability equations (NPSE)9 and direct numerical simulations (DNS).10, 11     
 Even if the boundary layer flow over a swept airfoil is homogeneous along the spanwise direction, the surface 
finish characteristics may involve noticeable inhomogeneities along the span.  As a result, the naturally excited 
crossflow vortices often involve a spanwise modulation of the dominant crossflow wavelength such that the adjacent 
vortices are not identical to each other, and display pronounced variations from one vortex to the next.  To model the 
effects of this spanwise modulation in the simplest possible context, we employ a flow setting that is analogous to 
the “multiple-mode crossflow wave” configuration of Reibert and Saric12 wherein crossflow disturbances at a 
subharmonic spacing  of the most amplified stationary mode were seeded along with the crossflow disturbance at the 
fundamental wavelength.  This paper models a similar scenario for a realistic, transport relevant swept airfoil 
configuration.  Whereas Reibert and Saric used a roughness array spacing of three times the wavelength of the 
dominant crossflow mode, we find it sufficient to seed the first subharmonic to induce the necessary modulation of 
the stationary crossflow modes over the flow configuration of interest. 
 A brief description of the infinite swept wing configuration of interest and the analysis tools employed in the 
present work is given in Section II.  The combined nonlinear evolution of the fundamental and subharmonic 
crossflow modes is addressed in Section III by using NPSE.  While keeping the initial amplitude of the dominant 
stationary mode fixed, the strength of the spanwise modulation is varied by introducing a subharmonic mode with 
varying initial amplitude and/or phase with respect to the dominant crossflow wavelength (Section III-A).  The 
secondary instability characteristics of the resulting patterns of crossflow vortices are studied by solving a planar, 
partial differential equation based spatial eigenvalue problem that accounts for the disparity between the vortex 
orientation and the chordwise direction.6 The mode shapes of the predicted secondary modes for various levels of 
spanwise modulations are scrutinized in Sections III-C through III-E, and are also compared with the secondary 
instabilities in the simpler case of unmodulated crossflow vortices (Section III-B).  Preliminary results pertaining to 
the nonlinear evolution of these secondary instability modes are presented in Section IV. A related accompanying 
paper13 extends the prior studies of the same airfoil configuration by investigating the effects of subharmonic 
wavelength modes of the high frequency secondary instability, and the combined evolution of multiple types of 
secondary instability modes. 
 

II. Flow Configuration and Analysis Codes 
 The flow configuration of interest in this paper is identical to the laminar flow airfoil TAMU-003T-75(v.90) that 
was previously used by Duan et al.10 and Choudhari et al.11 to explore the breakdown characteristics of isolated Y- 
and Z-modes, respectively, of the secondary instability of stationary crossflow modes with a specified wavelength.  
The design process for this laminar flow airfoil was described by Belisle et al.14 The 9.3 percent thick, 30-degree 
swept airfoil is designed to achieve natural laminar flow over 60 and 50 percent of the suction and pressure surfaces, 
respectively, at the design condition of zero degree angle of attack, Mach number of M = 0.75, and chord Reynolds 
number of approximately 17 million based on freestream speed, a streamwise chord length of 3.658 m (12 ft), 
freestream temperature of 216.65 K, and density of 0.302 kg/m3.  The latter conditions correspond to a flight altitude 
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of 12,192 m (40,000 ft).  Design constraints for the wing included a lift coefficient that is typical of subsonic 
transports and a wing thickness distribution that is suitable for a mid-size business jet.  At the design angle of attack, 
both Tollmien-Schlichting and crossflow instabilities are sufficiently weak that natural laminar flow should be 
achievable over a significant portion of the airfoil surface without any external means of boundary layer control.  In 
this paper, we focus on the off design condition corresponding to an angle of incidence equal to -1 degree, i.e., the 
same condition as that used by Li et al.9 in their PSE and LSIT analysis. At this off-design condition, a stronger 
crossflow instability exists on the suction side,9,14 which provides the basis for potentially implementing DRE-based 
laminar flow technology at the higher Reynolds numbers of interest.  
 For the work described in this paper, the mean boundary-layer flow over the suction surface of the airfoil was 
taken from the boundary layer solution obtained by Li et al.9 It was computed using the boundary layer solver 
BLSTA,15 designed specifically for generating accurate boundary layer solutions that are required for boundary layer 
stability analysis of swept and tapered wings. The inviscid surface-pressure distribution was derived from an Euler 
solution under free flight conditions.14 The number of wall-normal points used for boundary layer computations was 
well in excess of that used by Wie15 for validating the BLSTA code. Sensitivity to streamwise resolution was also 
assessed by Li et al.9 by using 115, 229, 457 and 913 points over the chord length of interest (with proportionally 
greater number of points near the leading edge), and the solution was converged with 115 streamwise points. Similar 
to the preceding work,9  the computations presented in this paper are based on 229 points over the chord length. The 
boundary layer solution computed in this manner is suitably interpolated using cubic splines when necessary.   
 The growth of high-frequency secondary instability modes supported by a uniform pattern of finite amplitude 
stationary crossflow vortices of fixed spanwise wavelength was analyzed by Li et al.9 by using the fully spatial 
methodology described in the earlier papers.6  The main difference between the primary and secondary stability 
analyses is that the basic state for the secondary modes (i.e., the mean boundary layer flow modified by the primary 
crossflow mode) varies in both surface-normal and spanwise directions; and hence, the instability characteristics of 
the secondary modes must be analyzed using a planar, partial differential equation based eigenvalue problem, rather 
than the ordinary differential equation based eigenvalue problem of the classical analysis.  In ongoing work, non-
parallel effects on the secondary mode evolution are being evaluated using plane marching PSE16 and the results of 
that analysis will be presented in a future paper.  The selection of the grid and other aspects of the numerical 
computation of secondary instabilities was based on extensive experience with a similar class of flows, and spot 
checks were made to ensure that the amplification rates predicted via baseline grids were in agreement with those 
based on grids that were twice as large in either direction.  Typically, 121 points in the wall-normal direction and 65 
points in the spanwise direction were found to be sufficient for the 2D, planar eigenvalue analysis involving 
subharmonic modulation of the stationary state.   
 Linear and nonlinear development of the primary instability (i.e., stationary crossflow vortices) is computed 
using linear/nonlinear parabolized stability equations (LPSE and NPSE, respectively) as implemented in the Langley 
Stability and Transition Analysis Codes (LASTRAC).17  For nonlinear PSE marching, 281 points are used in the 
wall-normal direction, which is more than sufficient. The streamwise marching step-size was appropriately adjusted 
for each computation as needed to capture the corresponding modal evolution. We denote the ranges of Fourier 
modes in time and in the spanwise direction by (-m, m) and (-n, n), respectively.  A total of 48 spanwise Fourier 
harmonics (n = 96) is used to compute the nonlinear development of a primary crossflow mode of specified 
spanwise wavelength, λ, and the truncation error is estimated a posteriori to be at least nine orders of magnitude 
smaller than the most energetic fundamental mode.  Linear and nonlinear development of the secondary instabilities 
of crossflow vortices and the ensuing laminar breakdown process is predicted by using six to twelve temporal 
harmonics (n = 6 to 12), with additional harmonics introduced as required during the course of the chordwise 
marching computation. 

III. Secondary Instability of Modulated Crossflow Patterns 
As described in a previous paper by Li et al.,9 the swept wing boundary layer of interest supports stationary 
crossflow instabilities over a broad spectrum of spanwise wavelengths, ranging from approximately 1 mm to more 
than 30 mm.  The most amplified stationary crossflow mode corresponds to λ = 8 mm, which achieves a peak linear 
N-factor of more than 12.  Its first subharmonic at λ = 16 mm, which is used in this paper to provide the necessary 
spanwise modulation for the 8 mm mode, also has a strong linear growth potential, reaching a peak N-factor of 
approximately nine.  
A.  Nonlinear Evolution of λ  = 8 mm mode modulated by λ  = 16 mm  

Figure 1 shows the NPSE predictions for the combined evolution of stationary crossflow modes for specified 
initial amplitudes of the λ = 8 mm and λ = 16 mm modes.  In all cases, the initial amplitude of the fundamental 



 
American Institute of Aeronautics and Astronautics 

 
 

4 

stationary crossflow mode (λ = 8 mm) is held fixed while the amplitude of the subharmonic λ = 16 mm mode is 
varied in order to assess the effects of spanwise modulation.  Figure 1(a) shows the modal evolution as a function of 
the (normalized) chordwise coordinate X/C for λ = 8 mm and λ = 16 mm, along with the corresponding variation in 
the amplitude of the mean flow correction, MFC, which provides an approximate measure of the level of nonlinear 
effects on the stationary crossflow evolution.  The baseline case with zero modulation is denoted as case B in Fig. 1.  
Three additional cases corresponding to increasing modulation amplitudes are included in the plot, which are 
denoted as L (low), M (mid), and H (high) level of modulation, respectively.  These cases are defined in terms of the 
amplitudes of the fundamental and subharmonic modes at X/C = 0.20, where these modes reach an amplitude of 
O(1%), which is deemed amenable to measurement in an experiment.  In all four cases, the amplitude of the λ = 8 
mm mode at X/C = 0.20 is 0.0255, whereas the modulation amplitude varies through 0 (Case B), 0.00088 (Case L), 
0.00176 (Case M) and 0.00325 (Case H), respectively.  Here, each modal amplitude represents the maximum 
perturbation in chordwise velocity component, normalized by the freestream speed U∞.  In all three cases, the phase 
difference between the fundamental and subharmonic modes at the inflow location of X/C = 0.0212 is set to zero.  
For the highest level of modulation (Case H), the amplitude of the λ = 16 mm mode is sufficiently high for this 
mode to dominate over the λ = 8 mm mode; and hence, this case provides an approximate upper bound on the level 
of modulation to be used in the present study. 

 

  
 (a) Effect of modulation strength (characterized 
by the initial amplitude of the  λ  = 16 mm mode) 
for zero initial phase difference.  MFC denotes 
mean flow correction. 

(b)  Effect of relative initial phase between the λ  = 8 
mm and λ  = 16 mm modes for case M. 

Figure 1.  Nonlinear evolution of λ  = 8 mm stationary mode with modulation by λ  = 16 mm mode. 
 
The modal evolutions plotted in Fig. 1(b) correspond to the case where the amplitudes of both fundamental (λ = 

8 mm) and subharmonic (λ = 16 mm) modes have been held fixed, but the relative phase of the subharmonic mode 
at the inflow station is varied from 0 degrees to 180 degrees.  The figure shows that (among the phase values 
considered herein) a relative phase of 90 degrees leads to the highest growth of the fundamental mode and the 
lowest peak amplitude of the subharmonic mode.  On the other hand, a relative phase angle of 45 degrees is seen to 
maximize the spanwise modulation associated with the λ = 16 mm mode.  Both modes evolve in an identical manner 
for relative phase angles of 0 degrees and 180 degrees, which is to be expected because the  λ = 8 mm mode 
corresponds to first harmonic of the λ = 16 mm mode; and hence, the initial condition for a phase difference of 0 
degrees can be recovered via 8 mm spanwise translation of the initial condition corresponding to a phase difference 
of 180 degrees.  The results in Fig. 1(b) show that the initial phase difference can have a marked effect on the 
downstream evolution of the fundamental mode and the modulation.  However, the effect of phase differences on 
the secondary instability of the resulting vortex structures is deferred to a future investigation and the remaining 
paper focuses entirely on the cases described in Fig. 1(a). 
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B.  Secondary Instability for Zero Modulation Case (Case B) 

Figures 2(a) through 2(d) show the crossplane contours of normalized chordwise velocity at selected stations 
ranging from X/C = 0.40 to X/C = 0.65.  While the velocity contours at X/C = 0.40 indicate a relatively benign 
vortex structure, the strongly overturned (i.e., rolled up) contours at the remaining three locations indicate the 
potential for a strong, high-frequency secondary instability along the outer shear layer that bounds the vortex 
structure.  The results of secondary instability analysis at X/C = 0.60 are shown in Figs. 3(a) and (b). Illustrative 
mode shapes depicting the cross-sectional distribution of the chordwise velocity fluctuation associated with the 
different secondary mode disturbances are shown in Figs. 4(a) through 4(e). 

 

  
(a) X/C = 0.4 (b) X/C = 0.5 

  
(c)  X/C = 0.6 (d)  X/C = 0.65 

Figure 2.  Mean chordwise velocity contours for baseline flow with zero modulation (Case B). 
 

  
(a) Spatial growth rates. (b)  Phase speeds. 

Figure 3. Growth rates and phase speeds of the dominant families of secondary instability  
modes with fundamental spanwise wavelength at the location X/C = 0.6 for case B.  The curve legend indicates 
the dominant basic state shear (Y or Z) driving the growth of the secondary disturbance. 
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The results of secondary instability analysis in Figs. 3(a) and (b) indicate the presence of at least five unstable 
modes at X/C = 0.60.  The spatial growth rates of these modes are plotted in Fig. 3(a), and Fig. 3(b) illustrates the 
corresponding phase speeds normalized by the freestream velocity.  Three of the five modes correspond to the Y 
type of secondary disturbance, whose energy production mechanism is primarily related to the wall-normal shear 
associated with the basic state in Fig. 2.  The remaining two modes are of the Z type, which derive a majority of 
their energy growth from the spanwise shear of the basic state.  In some cases, secondary modes with comparable 
contributions to the overall enrgy production from both wall-normal and spanwise shear (i.e., YZ modes) have also 
been encountered;18 however, none were found in this particular case. The fundamental mode of the Y type has the 
highest growth rate in this baseline case.  Figure 3(b) shows that the Y-mode secondary disturbances have higher 
phase velocities than the Z mode and the dominant Y mode (Mode Y1) also has the highest phase velocity among 
the secondary modes of interest.  The phase velocities for most of the Y-mode disturbances are very close to each 
other and their frequency bandwidth tends to be significantly larger than that of the most unstable Z modes.  
 

  
(a) Mode Y1. (b) Mode Y2. 

  
(c)  Mode Y3. (d)  Mode Z4. 

 

 
(e) Mode Z5. 

Figure 4. Mode shapes in terms of the magnitude of chordwise velocity fluctuation for Y modes 1 through 3 
(ranked within respective families in the order of decreasing peak growth rate in Fig. 3(a)) and the two Z-
mode secondary instabiliies at X/C = 0.60. A single spanwise wavelength of the stationary crossflow vortex 
with λ  = 8 mm is shown in the figure. 
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Figures 4(a) and 4(b) reveal that both of the dominant Y modes (modes Y1 and Y2) are concentrated near the top of 
the vortex structure, but mode Y1 also has weaker secondary peaks above and below the primary peak.  Mode Z4 
represents the more unstable mode out of the two Z modes and is concentrated along the inclined portion of the 
shear layer that bounds the vortex structure (Fig. 4(d)).  Somewhat surprisingly, the subdominant mode Z5 has peak 
fluctuations closer to the top of the vortex structure (Fig. 4(d)), yielding a mode shape that appears to resemble the 
mode shapes of both Y and Z modes.   

To quantify the overall amplification potential of the above secondary modes, N-factor predictions for the 
dominant secondary disturbances in the baseline case are shown in Fig. 5.   Only the Y1 and Y2 modes reach a peak 
N factor in excess of 6, with mode Y1 reaching N = 10 near  X/C = 0.60.  The highest N factor achieved by mode Z4 
corresponds to N ≈ 6.  

 

 
 

Figure 5.  Chordwise evolution of linear N-factors for Case B.  Mode type and peak frequency in kHz is 
indicated in plot legend. 

 
C.  Secondary Instability for Low Modulation Amplitude (case L) 

Figures 6(a) through 6(d) show the crossplane contours of normalized chordwise velocity at selected stations for 
Case L.  The nonlinear evolution of the stationary crossflow instability is visibly dominated by the λ = 8 mm mode, 
yet the low level of modulation leads to small yet noticeable differences between each adjacent pair of vortex 
structures corresponding to λ = 8 mm.  Out of  these two vortex structures within each wavelength of the λ = 16 mm 
modulation, the left structure is somewhat stronger than the right one as seen from the stronger exchange of 
momentum within the crossplane (Fig. 2(d)).  The difference between the strengths of the left and right vortex 
structures is presumably related to the nature of local interference between the λ = 8 mm and λ = 16 mm modes.  
Overall, the strongly overturned contours in Figs. 6(c) and 6(d) are similar to those for the baseline case, and hence, 
indicate a likely onset of comparable high-frequency secondary instability in Case L. 

The secondary instability growth rates in Fig. 7(a) and the associated mode shapes in Fig. 8 are consistent with 
the expectation that the more unstable secondary modes would be driven by the stronger of the two vortices within 
each modulating wavelength.  Somewhat surprisingly, however, one also observes that all secondary modes are 
concentrated within only one or the other of the two vortices. Thus, if the modes confined to the left and right vortex 
structures were to be excited independently of each other (i.e., with zero correlation between them), then there 
would be little correlation between the fluctuations within the adjacent pair of λ = 8 mm vortices, despite the 
relatively weak modulation amplitude in this case. 

The results of secondary instability analysis for the modulated stationary vortex pattern are shown in Figs. 7(a) 
and 7(b), and they indicate the presence of at least six unstable modes in Case L.  The spatial growth rates at X/C = 
0.6 are plotted in Fig. 7(a), and Fig. 7(b) illustrates the corresponding phase speeds.  Four out of the six dominant 
modes correspond to the Y-type of secondary disturbance, whereas the remaining two are Z modes. Again, a 
fundamental wavelength mode of the Y-type has the highest growth rate in this case and the Y-mode secondary 
disturbances have higher phase velocities and larger frequency bandwidth than the Z modes. 
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(b) X/C = 0.3 (b) X/C = 0.4 

  
(c)  X/C = 0.5 (d)  X/C = 0.6 

Figure 6.  Mean chordwise velocity contours for low modulation amplitude (Case L) 
 

 

  
(a) Spatial growth rates. (b)  Phase speeds. 

Figure 7. Growth rates and phase speeds of the dominant families of secondary instability  
modes at X/C = 0.6 for low modulation case (L).  The curve legend indicates the dominant basic state shear (Y 
or Z) driving the growth of the secondary disturbance. 

 
Illustrative mode shapes depicting the cross-sectional distribution of the chordwise velocity fluctuation 

associated with the different secondary mode disturbances are shown in Figs. 8(a) through 8(f).   Inspection of these 
mode shapes indicates that the Y-modes of secondary instability supported by the modulated crossflow pattern are 
generally grouped in pairs, with each pair being linked to one of the dominant Y modes in the baseline case.  The 
two modes within each pair have very similar mode shapes, but they reside on different vortex structures within the 
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subharmonic wavelength.  The Y-mode disturbance that is concentrated in the stronger, leftward structure 
corresponds to the higher growth rate within each pair of modes.   Indeed, the peak growth rates of both modes 
within a pair bracket the peak growth rate of the corresponding Y mode in the baseline case, presumably because the 
strength of the Y-mode secondary instability is related to the basic state shear within the vortex structure and the 
influence of modulation on this shear.  Thus, effectively, the modulation causes each mode in the baseline case to 
split into a pair of modes. In the absence of modulation, any pair of adjacent crossflow vortices involves identical 
vortex structures, and hence, the two secondary modes reduce to the single mode seen in Case B. The most 
interesting part of the mode shapes in Fig. 4 is that each mode shape is primarily concentrated  in only one of the 
two vortex structures across the 16 mm wavelength of the modulating disturbance.  In other words, regardless of the 
mode type, neither of the secondary modes has a signature that extends over the entire wavelength of the 
subharmonic stationary mode.  In contrast to the Y-mode pairs, however, the two Z modes (Figs. 8(e) and 8(f)) are 
concentrated solely within the stronger, leftward vortex structure.  They do not appear to have significantly unstable 
counterparts that reside on the weaker vortex structure on the right hand side of these figures.  Thus, the modest, yet 
finite amplitude modulation in Case L already has a stronger and more complex influence on the Z-mode instability.  
 

  
(a) Mode Y1. (b) Mode Y2. 

  
(c)  Mode Y3. (d)  Mode Y4. 

 

  
(e) Mode Z5. (f) Mode Z6. 

Figure 8. Mode shapes in terms of the magnitude of chordwise velocity fluctuation for Y-modes 1 through 4 
(ranked by decreasing order of peak growth rate in Fig. 3(a)) and the two Z-modes of secondary instability 
at X/C = 0.60. Two spanwise wavelengths of the stationary crossflow vortex with λ  = 8 mm are shown in 
each figure. 

 
To quantify the overall amplification potential of the secondary disturbances, N-factor predictions for the 

dominant secondary disturbances of various selected frequencies are shown in Fig. 9.   Results from Fig. 9 show that 
all four Y modes reach N factors well in excess of 10, and hence, have the potential to produce transition on their 
own.   Furthermore, the presence of modulation has strengthened the Z mode of instability so that mode Z5 reaches 
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N ≈ 8 and may be able to cause transition by itself as well.  Consistent with the peak growth rates at X/C = 0.60 in 
Fig. 7(a), the peak N factors of modes Y1 and Y2 in Case L bracket the peak N factor of the Y1 mode in the baseline 
case, and the N factors of modes Y3 and Y4 in Case L bracket the Y2 mode N factors in the baseline case. 

 

 
Figure 9.  Chordwise evolution of linear N-factors for Case L. Mode type and peak frequency in kHz is 

indicated in plot legend. 
 
 
D.  Secondary Instability for Case H  

The case of highest modulation amplitude is considered next.  The increased amplitude of the λ = 16 mm mode 
leads to a greater disparity between the strengths of the two vortex structures within each modulating wavelength at 
X/C = 0.5 (Fig. 10(a)).  In fact, the λ = 16 mm mode becomes dominant over a significant region of the 
computation.  Thus, at X/C = 0.6 (Fig. 10(b)), the stronger vortex on the left appears to have nearly engulfed the 
weaker vortex, and at X/C = 0.6 (Fig. 10(c)), the vortex pattern displays a single dominant vortex across the 16 mm 
wavelength.    

The secondary instability characteristics at X/C = 0.60 are summarized in Figs. 11(a)-(b) and 12(a)-(e).  The 
number of significant unstable modes is now reduced by one in comparison with the case of weaker modulation in 
Section III-B; and more importantly, no distinct pairing of the mode shapes is observed in this case.  The absence of 
mode splitting is attributed to the dominance of the subarhmonic mode that leads to a single prominent vortex 
structure across the subharmonic wavelength of λ = 16 mm. Furthermore, the Z-mode instability has become 
significantly stronger with the increased amplitude of modulation so that the maximum growth rate of mode Z2 is 
now larger than that of mode Y3 and approaches the peak growth rate of the most unstable mode Y1 at this location. 
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(a) X/C = 0.5 (b) X/C = 0.6 

 
(c) X/C = 0.65 

Figure 10.  Mean chordwise velocity contours for high modulation amplitude (Case H). 
 

 
 

 

  
(a) Spatial growth rates. (b)  Phase speeds. 

Figure 11. Growth rates and phase speeds of the dominant families of secondary instability  
modes at X/C = 0.60 for high modulation amplitude (Case H).  The curve legend indicates the dominant basic 
state shear (Y or Z) driving the growth of the secondary disturbance. 
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(a) Mode Y1. (b) Mode Z2. 

  
(c)  Mode Y3. (d)  Mode Z4. 

 

 
(e)  Mode Y5. 

Figure 12. |u| mode shapes for dominant modes of secondary instability at X/C = 0.60 for highest amplitude 
of modulation (Case H). The horizontal extent of each figure corresponds to the wavelength of the 
modulating mode (i.e., 16 mm).   

 
The N-factor evolution in Fig. 13 is consistent with the previously noted trends in local amplification rates at X/C 

= 0.60 (Fig. 11(a)).  Thus, the highest N factor reached by mode Z2 has now increased to 25, which is in fact larger 
than the peak Y-mode N factor of 22 because of the earlier onset of Z2 mode amplification. 
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Figure 13.  Chordwise evolution of linear N-factors for high modulation amplitude (Case H).  Mode type 

and peak frequency in kHz is indicated in plot legend. 
 
 

E.  Secondary Instability for Case M 

Case M corresponds to an intermediate value of the modulation amplitude in relation to the two cases previously 
considered in subsections III-C and III-D above.  As expected, the modal characteristics in Figs. 15(a)-(b) appear to 
fall in between those of Case L than Case H.  However, because of the presence of two distinct vortex structures 
across the subharmonic wavelength (Figs. 14(a)-(b)), the mode shapes in Figs. 16(a)-(h) are slightly more similar to 
those in Case L than in Case H.  Inspection of the mode shapes provides partial evidence of mode splitting.  Thus, 
the two dominant Y modes (modes Y1 and Y3) and both Z modes (modes Z2 and Z4) are concentrated along the 
stronger vortex on the left and have relatively weak fluctuations along the vortex on the right, whereas the 
subdominant mode Y5 has peak fluctuations along the weaker vortex on the right.  On the other hand, the greater 
disparity between the left and right vortex structures than that in Case L leads to larger differences among the overall 
growth rates of the Y-modes. Consequently, no pairwise grouping is obvious among the Y modes in Case M.  Figure 
17 confirms the stronger effect of the stationary modulation on the amplification of the Z-mode, which now reaches 
a peak N factor of nearly 18.  Even though the peak N factor of the Z2 mode is lower than that of the Y1 mode, the 
Z mode reaches the intermediate N-factor value of 10 before the Y1 mode does, and hence, mode Z2 could well be 
the dominant catalyst for transition even in Case M. 
 

 
 

(a) X/C = 0.5 (b) X/C = 0.60 
Fig. 14.  Mean chordwise mean velocity contours for mid level modulation (Case M).  
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(a) Spatial growth rates. (b) Phase speeds. 

Figure 15. Spatial growth rates and phase speeds of the dominant families of secondary instability modes at 
X/C = 0.6 for medium modulation amplitude (Case M).  The curve legend indicates the dominant basic state 
shear (Y or Z) driving the growth of the secondary disturbance. 
 

 

  
(a) Mode Y1. (b) Mode Z2. 

  
(c)  Mode Y3. (d)  Mode Y4. 

 

 
(g)  Mode Z5. 

Figure 16. |u| mode shapes at X/C = 0.6 for medium modulation amplitude (Case M). Two spanwise 
wavelengths of the stationary crossflow vortex with λ  = 8 mm are shown in the figure. 
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Figure 17.  Chordwise evolution of linear N-factors for mid level modulation (Case M).  Mode type and 

peak frequency in kHz is indicated in plot legend. 
 

IV. Nonlinear Evolution of Secondary Instability in the Presence of Modulation 
Next, we explore the question of whether and how the presence of the modulating component influences 

transition onset due to nonlinear breakdown of the secondary instability modes described in the previous section.  To 
that end, NPSE computations were performed for two selected cases from Section III, involving a Y-mode 
disturbance and a Z-mode disturbance, respectively.  These results extend the previous findings9–11 for Y- and Z-
mode breakdowns in flow configurations without any modulation.  The amplitude evolution during the Z-mode 
breakdown is shown in Fig. 18, where we have plotted the RMS amplitude of the fundamental frequency associated 
with the secondary instability (denoted as m=1) and its various harmonics (m=2–5) as functions of the chordwise 
coordinate.  At each chordwise location, the maximum of the RMS fluctuation over the cross-section of the vortex 
pattern is chosen as a measure of the local amplitude. 

 
 

 
Figure 18.  Nonlinear evolution of amplitudes during the nonlinear breakdown of Z2-mode disturbance 
with frequency of 30 kHz (Case H).  Normalized initial amplitude of the Z2 mode at X/C = 0.485 is Ainit = 
10-3.  
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In the entire region of this computation, which extends somewhat past the onset of rise in skin friction near X/C = 
0.552, the fundamental harmonic (m=1) remains the most energetic among all modes. Similar to the Z-mode 
breakdown case in Refs. [9] and [11], the fundamental harmonic grows linearly until the stabilizing influence of 
nonlinearity causes the growth rate to decrease relative to its initial, weakly nonlinear evolution. Following the 
region of reduced growth rate, the fundamental amplitude begins to increase more rapidly in the vicinity of the 
transition onset location.   The amplitude of the m=3 harmonic displays a similar pattern of decreased and increased 
growth rate as the fundamental (m=1), but the changes in its evolution appear to lead those in the fundamental. The 
evolution of the m=4 and m=5 harmonics displays two different episodes of this stair-stepping structure.  The rapid 
increase in modal amplitude during the second episode corresponds to a significantly higher growth rate than that 
during the initial, weakly nonlinear evolution, and hence, is suggestive of a strong tertiary instability that amplifies 
over a shorter spatial scale.  While the rapid growth slows down after the amplitudes of the m=4 and m=5 harmonics 
have increased sufficiently, the increased amplitudes of those modes appear to induce a reverse energy cascade 
involving a rapid rise in the amplitudes of successively lower harmonics.  An analogous cascade was also seen 
during the Z-mode breakdown in the baseline case.11  

Figure 19 shows the cross-plane distributions of RMS perturbation associated with the high frequency instability 
at selected chordwise locations. At each station, the amplitude distribution is normalized to have a maximum value 
of unity.  At X/C=0.501, the amplitude distribution mimics the linear eigenfunction of the Z2 mode from Fig. 12(b); 
and it retains that similarity until very close to the transition onset location. Just before breakdown, the fluctuations 
concentrated along the inclined shear layer develop a localized distortion near the location of peak RMS amplitude, 
which leads to the development of unsteady structures with smaller spanwise scales.  Farther downstream, the 
amplitude distributions begin to spread out, thus affecting a larger cross-sectional area of the merged vortex 
structure.  The overall development of the RMS velocity fluctuations is quite similar to that in the zero modulation 
case.11 
 

  
(a) X/C = 0.501 (b) X/C = 0.540 

  

(c)  X/C = 0.552  (d)  X/C = 0.559 
 

Figure 19. Time-RMS distributions of chordwise velocity at selected chordwise stations during the nonlinear 
breakdown of Z2-mode disturbance in Case H (flow parameters are same as Fig. 18). The white lines in the 
background denote the chordwise velocity contours of unperturbed, stationary crossflow vortex.  

 
 During Z-mode breakdown in the absence of any modulation,11 the onset of transition was followed by a 

spanwise spreading of turbulence within a wedgelike region that is analogous to the problem of turbulent 
contamination.  In the present case with a subharmonic modulation, the turbulence needs to spread across the 
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modulation wavelength of 16 mm rather than across the 8 mm width of the dominant vortex structures in the zero 
baseline case.  Assuming that the wedge angle corresponding to spanwise contamination remains approximately 
same (since it is likely to be determined by the local Reynolds number and Mach number), the transition zone in the 
presence of modulation is expected to be twice as long as that in the baseline case.  However, numerical simulations 
are required to confirm this conjecture.  Although results for the Y-mode breakdown case are not shown in this 
paper, the above remarks concerning the spanwise spreading of turbulence also apply to that transition scenario (see, 
also, Ref. 10 for DNS results pertaining to Y-mode breakdown in a zero modulation case). 

V. Summary 
In this paper, previously reported computations of secondary instability of stationary crossflow modes were 

extended from crossflow modes of a single spanwise wavelength to vortex patterns that are modulated in the 
spanwise direction by subharmonic stationary modes.  Secondary instability of the modulated crossflow pattern is 
studied using planar, partial-differential-equation based eigenvalue analysis.  Results show that modulation by the 
first subharmonic of the input stationary mode results in mode splitting that leads to a pair of secondary modes with 
somewhat different amplification rates and that are concentrated within different individual vortex structures across 
the subharmonic wavelength.  The mode splitting phenomenon suggests that a more complex stationary modulation, 
such as that induced by natural surface roughness, would yield a considerably richer spectrum of secondary 
instability modes.  Because of the spatial decoupling between the modes, the spanwise modulation should also 
enhance the decorrelation between secondary mode fluctuations across the spanwise pattern of stationary crossflow 
vortices. 

Computations of the nonlinear development of selected secondary instability modes have shown that the 
essential features of nonlinear evolution in the modulated flow configurations are rather similar to those documented 
previously in the zero modulation case.  The similarity in transition onset mechanisms may be attributed to the 
similarity in the mode shapes of the dominant secondary instabilities, which in both cases, are concentrated along 
specific subregions of the shear layer that bounds the stationary vortex structure.  The main anticipated effect of 
modulation corresponds to an increased length of the transition zone, but numerical simulations are desirable to 
confirm that effect.  
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