
The Mathematics of Dispatchability, Revisited

Paul Morris

Abstract
Dispatchability is an important property for the efficient ex-
ecution of temporal plans where the temporal constraints are
represented as a Simple Temporal Network (STN). It has been
shown that every STN may be reformulated as a dispatch-
able STN, and dispatchability ensures that the temporal con-
straints need only be satisfied locally during execution. Re-
cently, it has also been shown that Simple Temporal Networks
with Uncertainty, augmented with wait edges, are Dynami-
cally Controllable provided every projection is dispatchable.
Thus, dispatchability has considerable theoretical as well as
practical significance.
One thing that hampers further work in this area is the under-
developed theory. Moreover, the existing foundation is inad-
equate in certain respects. In this paper, we develop a new
mathematical theory of dispatchability and its relationship to
execution. We also provide several characterizations of dis-
patchability, including characterizations in terms of the struc-
tural properties of the STN graph. This facilitates the poten-
tial application of the theory to other areas.

Introduction
The concept of Dispatchability was introduced by (Muscet-
tola, Morris, and Tsamardinos 1998) in the context of execu-
tion of temporal plans. The work was motivated by the needs
of the Remote Agent experiment (Muscettola et al. 1998),
where an AI system controlled the NASA Deep Space I
spacecraft for several days.

Dispatchability is a property of a Simple Temporal Net-
work (STN) (Dechter, Meiri, and Pearl 1991) that allows the
network to be correctly executed even when propagation is
limited to neighboring timepoints. Another way of looking
at this (Morris et al. 2013) is that temporal constraints need
only be checked locally when deciding whether to execute
a procedure. It was shown that every consistent STN can
be reformulated as an equivalent minimum dispatchable net-
work, which improves execution efficiency while providing
real-time guarantees (Muscettola, Morris, and Tsamardinos
1998). A more efficient version of the reformulation algo-
rithm was presented in (Tsamardinos, Muscettola, and Mor-
ris 1998). Recently, it has been shown (Morris 2014) that
Simple Temporal Networks with Uncertainty, augmented
with wait edges, are Dynamically Controllable provided ev-
ery projection is dispatchable. Thus, dispatchability has the-
oretical as well as practical significance.

However, there are some problems with the foundations
of dispatchability theory, as we will see. Also, a greater un-
derstanding of the nature of dispatchability would be help-
ful in proving further connections of dispatchability to other
concepts. In this paper, we develop a new formal theory of
dispatchability, and provide characterizations of dispatcha-
bility in terms of the structural properties of the STN graph.

Time Dispatching Algorithm
The KR’98 paper (Muscettola, Morris, and Tsamardinos
1998) “Reformulating Temporal Plans For Efficient Execu-
tion” (hereafter called MMT) defines dispatchability. First
it defines an algorithm for a “dispatching execution” as fol-
lows.

TIME DISPATCHING ALGORITHM:
1. Let

A = {start_time_point}
current_time = 0
S = {}

2. Arbitrarily pick a time point TP in A
such that current_time belongs to its
time bound;

3. Set TP execution time to current_time
and add TP to S;

4. Propagate the time of execution of TP
to its IMMEDIATE NEIGHBORS in the
distance graph;

5. Put in A all time points TPx such
that all negative edges starting from
TPx have a destination already in S;

6. Wait until current_time has advanced
to some time between

min{lower_bound(TP) : TP in A}
and

min{upper_bound(TP) : TP in A}
7. Go to 2 until every time point is

in S.

Then it defines a network to be dispatchable if it is always
”correctly executed” by a dispatching execution. (Note the
step 5 condition prevents a TP x from being executed until it
is “enabled,” i.e., all the TPs that are directly constrained to
precede x have already been executed.)



This captures the intuitive concept but is unsatisfactory as
a formal definition for several reasons:

1. If this is to be independent of practical (computer) lim-
itations, it must assume an idealized situation where the
time required to execute steps 2-5 is negligible compared
to the granularity of the time steps.
For example, if a TP x is constrained ([0,0] constraint) to
occur at the SAME time as a TP y, then after executing
one of those, say x, the algorithm must race through steps
2-5 in order to get to y within the same time tick.
However, we would like the formal definition to represent
time in real numbers, in which case steps 2-5 would have
to take 0 time.

2. The terminology “correctly executed” is not precisely de-
fined in the paper.

3. The paper introduces a process where an edge CB can be
removed as not needed for dispatchability, provided it sat-
ifies a triangle rule CA+AB=CB with respect to another
edge AB, said to dominate it. However, the analysis in
MMT overlooks the following pathological case:

In MMT terms, AB strictly dominates CB and BA strictly
dominates CA. Thus, both CA and CB would be removed
(see the code in Figure 5 in MMT). However, the resulting
network would not be equivalent to the original. Note that
CA and CB are NOT mutually dominating.1 The MMT
analysis relies heavily on dominance arguments.

Ideally, we would like to define “dispatching execution”
without reference to an algorithm, and clarify how it relates
to dispatchability. In the following sections, we consider se-
quences where timepoints are “instantiated” (i.e., set to oc-
cur at a specific time) and where the instantiated times are
propagated to neighboring timepoints in the STN graph. We
will then consider executions to be instantiations that pro-
ceed forward in time. In our analysis, dominance does not
play a central role so we avoid the issue in item 3 above.

Instantiation/Execution Sequences
Intuitively, an instantiation-sequence may be viewed as an
attempt to find a partial solution to an STN by scheduling
a timepoint at a fixed time within its bounds, locally prop-
agating2 upper and lower bounds from the timepoint, and
repeating for some subset of the timepoints.

1It should be noted that the algorithm in a later pa-
per (Tsamardinos, Muscettola, and Morris 1998) handles this case
correctly because there the AB rigid component would be con-
tracted to a single node.

2i.e., only to neighboring timepoints

In the following discussion, we assume the STNs are con-
sistent unless there is an explicit statement otherwise. By
local consistency of a partial schedule S, we mean S satis-
fies the direct constraints between every pair of timepoints
in its domain.

Definition 1 Given an STN, an instantiation-sequence E is
a pair <A, S> where A = {a1, ..., an} is a sequence of dis-
tinct timepoints and S is a locally consistent partial schedule
defined on the timepoints in A. We say each ai is in E.

Thus, an instantiation-sequence has two parts: a partial
schedule part that determines the times of the timepoints,
and a sequence part that specifies the order of propagation.

We will say an instantiation-sequence is complete if the
{ai} sequence3 includes every timepoint in the STN. Note
that we do NOT require instantiation-sequences to be com-
plete in general. This allows us to define a prefix relationship
between them.

Definition 2 An instantiation-sequence <A, P> is a prefix
of an instantiation-sequence <B, Q> if the sequence A is a
prefix of the sequence B and the partial schedule Q coincides
with P on A.

Intuitively, an execution is an instantiation that proceeds
forward in time. In the following, a timepoint y is a direct
predecessor of a timepoint x if there is an explicit negative
edge from x to y in the distance graph of the STN.

Definition 3 An execution-sequence for an STN is an
instantiation-sequence E = <{ai}, S> such that
(1) Si+1 ≥ Si, for each i, and
(2) each direct predecessor of a timepoint in E is also in E.

Condition (2) may be viewed as a reasonable strengthen-
ing of local consistency for executions, since if it is false, an
extension to a complete execution-sequence is always im-
possible.

Note that even though an execution proceeds forward in
time, the partial schedule alone does not determine the or-
der of propagation when timepoints are simultaneous. The
sequence part makes that unambiguous, which is useful for
proving results about executions.

It is easy to see that any prefix of an execution-sequence is
itself an execution-sequence since local consistency implies
that S(y) < S(x) if y is a direct predecessor of x.

NOTATION The following notations assume E =
<{a1, ..., an}, S> is an execution sequence.

We write Ei to denote the prefix of E that contains the
timepoints up to ai for i < n. By convention, E0 is the
empty execution sequence.

A timepoint x is enabled by E if every direct predeces-
sor of x is in E. We write enabled(E) to denote the set of
timepoints that are enabled by E. Note that E is contained
in enabled(E) by condition (2) of the definition. However,
there may be timepoints in enabled(E) that are not in E; we
denote this set by ready(E).

3We may sometimes write{a1, ..., an} as {ai} when we don’t
need to refer to an.



As an example, an must be in enabled(En−1) by (2), and
hence is in ready(En−1) since it is not in En−1.

We write lower(E,x) to denote the lower bound on x ob-
tained by local propagation from the {ai} in E with respect
to their scheduled times in S, and similarly for upper(E, x).

We also use the following notations:
MIN_LOWER(E)

= min{lower(E,x) | x in ready(E)}

MIN_UPPER(E)
= min{upper(E,x) | x in ready(E)}

latest(E) = S(a_n).

OBSERVATION: Note the monotonicity of key con-
cepts with respect to an execution sequence. For exam-
ple, lower(Ei,x) is non-decreasing with respect to i, and
upper(Ei,x) is non-increasing. Similarly, latest(Ei) = S(ai)
can only increase or stay the same.

Dispatchability
We are almost ready to define the concept of a dispatching
execution in a way that captures more formally the result of
the TIME DISPATCHING ALGORITHM. We proceed by
considering and then simplifying various candidate defini-
tions. Our first candidate is a literal transcription of the cri-
terion in the TIME DISPATCHING ALGORITHM for se-
lecting a timepoint for execution.

Candidate Definition 1: A dispatch-sequence is an
execution-sequence E = <{ai}, S> such that for i > 1,

MIN LOWER(Ei−1) ≤ S(ai) ≤ MIN UPPER(Ei−1).
Note, however, the left-hand inequality is satisfied by ev-

ery execution-sequence because of the local consistency re-
quirement, so it is unnecessary. Furthermore, because of
monotonicity, if x is in ready(Ei−1) and upper(Ei−1, x) <
S(ai), this will continue to hold for larger i, since S(ai) can-
not decrease, upper bounds cannot increase, and thus x can-
not get into E. In effect, x will be “left behind” as the latest
time passes it by, and S(ai) ≤ MIN UPPER(Ei−1) will
continue to be violated. Thus, we can simplify the definition
further by requiring it only for the greatest value of i. These
simplifications lead to the following:

Candidate Definition 2: A dispatch-sequence is an
execution-sequence E = <{a1, ..., an}, S> such that
upper(En−1, x) ≥ S(an) for all x in ready(En−1)

We can express this more succinctly in terms of a “past
completeness” property. As we will see later, it is useful to
define several versions of this property of varying strengths.
Definition 4 An execution-sequence E = <{a1, ..., an}, S>
is weakly past-complete if x in ready(En−1) implies
upper(En−1, x) ≥ latest(E).

Intuitively, the weak past-completeness4 condition re-
quires that each timepoint chosen for execution must be ex-
ecuted at a time no greater than the minimal upper bound
among the timepoints currently eligible for execution.

4The definition is equivalent to a requirement that x in
enabled(En−1) and upper(En−1, x) < latest(E) implies x is in
En−1, which explains the “completeness” terminology.

This allows a more succinct version of Candidate Defini-
tion 2 as our final definition of a dispatching execution.

Definition 5 A dispatch-sequence is an execution-sequence
that is weakly past-complete.

The next (strong) version of past-completeness is useful
as an intermediate property in our later results.

Definition 6 An execution-sequence E = <{ai}, S> is
strongly past-complete if upper(E,x) ≥ latest(E) for x not
in E.

Intuitively, strong past-completeness ensures that each
timepoint chosen for execution is executed at a time no
greater than the minimal upper bound among all non-
executed timepoints. Thus, no timepoint will be “left-
behind” as the execution advances. The following result for-
mally justifies the strong/weak terminology.

Lemma 1 Strongly past-complete implies weakly past-
complete.

Proof: Suppose an execution-sequence E is strongly
past-complete where E = <{a1, ..., an}, S>. If x is in
ready(En−1) then either x = an or x is not in E.

If x is not in E then

latest(E) ≤ upper(E, x) ≤ upper(En−1, x)

by strong past-completeness, while if x = an then
latest(E) = S(an) ≤ upper(En−1, x) by local consistency.
In both cases, upper(En−1, x) ≥ latest(E) so E is weakly
past-complete. 2

Finally, with some additional notation, we have a super
version that will be useful in a later proof.

NOTATION We will use d(x, y) to denote the shortest-
path distance between two timepoints x and y in an STN.
By convention d(x, y) = ∞ if there is no path from x to y
in the distance graph.

Definition 7 An execution-sequence E = <{ai}, S> is su-
per past-complete if whenever x is in E and y is not in E,
then S(x) + d(x, y) ≥ latest(E).

Note that if x is a node in E that determines upper(E,y),
then there is an edge of length u from x to y. Since d(x, y) ≤
u we have upper(E, y) = S(x)+u ≥ S(x)+d(x, y). Thus
the super version implies the strong version.

Observe that any solution to an STN can have its time-
points sorted according to the scheduled time (placing si-
multaneous timepoints in arbitrary order). Thus, every
solution schedule S can be associated with a complete
execution-sequence E = <{ai}, S>. We will see be-
low (in Theorem 1) that all the prefixes of E are super
past-complete, hence weakly past-complete, and thus are
dispatch-sequences.

We are now ready to define dispatchability. The defini-
tion essentially says that for every dispatch-sequence E =
<A,S>, the schedule S can be extended to a solution sched-
ule S′ where the additional timepoints occur later.

Definition 8 An STN is dispatchable if every dispatch-
sequence is a prefix of a complete execution-sequence.



By Lemma 1 every strongly past-complete execution-
sequence is weakly past-complete. The converse is not true
in general, but we will see later that for the purpose of defin-
ing dispatchability of an STN, there is a sense in which ei-
ther the strong or weak past-completeness property could
have been used. The strong property has the virtue of being
simpler while still involving only local propagation. How-
ever, we have expressed the definition in terms of the weak
property to maintain continuity with the earlier MMT work.

The usefulness of the super past-completeness property
lies in the following result.

Theorem 1 An execution sequence E = <A,S> is a prefix of
a complete execution-sequence if and only if (1) E is super
past-complete and (2) S is path-consistent with respect to
the STN, i.e., S(y)− S(x) ≤ d(x, y) for each x and y in E.

Proof: First suppose E = <a1, ..., an,S> is a prefix of a
complete execution-sequence. Then S can be extended to a
solution S′ so (2) clearly holds.

Suppose x is in E but y is not in E. Since S′ is a solution,
S′(y) − S′(x) ≤ d(x, y). Thus, S′(x) + d(x, y) ≥ S′(y).
Note that S′(y) ≥ S′(an) since y comes after an in the
complete execution sequence. Since S′ coincides with S on
E, we have S(x) + d(x, y) ≥ S(an) so (1) holds.

Conversely, suppose (1) and (2) both hold. Consider a
modified STN where for each z not in E we add a new edge
from z to an of length 0 (i.e., a new constraint that requires
z ≥ an).

We will show that S is still path-consistent with respect to
the modified STN. Suppose not. Then there is a cycle-free
shortest path

x, ..., z, an, ..., y

such that S(y) − S(x) > d′(x, y), for some x and y in
E and z not in E, where d′ is the shortest-path distance in
the modified STN. Note that the path must pass through
one (and only one since the path is cycle-free) of the new
edges. Thus, d′(z, an) = 0, while d′(x, z) = d(x, z) and
d′(an, y) = d(an, y).

By (1) we have S(x) + d(x, z) ≥ S(an). This can be
rewritten as

S(an)− S(x) ≤ d(x, z) = d′(x, z) = d′(x, an)

since d′(z, an) = 0 (and the path is a shortest path).
By (2) we have

S(y)− S(an) ≤ d(an, y) = d′(an, y).

Adding the inequalities, we get

S(y)− S(x) ≤ d′(x, an) + d′(an, y) = d′(x, y)

which contradicts our assumption. We conclude that S is
path-consistent with respect to the modified STN. This is the
same thing as saying that S is locally consistent with respect
to the minimal (AllPairs) network. By (Dechter, Meiri, and
Pearl 1991), S can be extended to a solution schedule S′

for the modified STN. Because of the added edges, S′(z) ≥
S(an) for each z not in E. Thus, by sorting S′, we can form
a complete execution sequence E′ that is an extension of E.
2

Structural Characterizations
We will now prove some characterizations of dispatchability
in terms of structural properties of the STN distance graph.
These determine whether particular path constraints are en-
forced or not in a dispatching execution.

DISCUSSION Intuitively, a path constraint between x
and y of length u − v can be enforced by propagating a
lower bound of u to x and an upper bound of v to y from
some common precursor z.

It is shown in MMT that, in a dispatching execution of the
STN Distance Graph, upper bounds are propagated through
non-negative edges in the forward direction, while lower
bounds are propagated through negative edges in the back-
ward direction. Thus, enforcement can be achieved by a
chain of negative edges from x to to z and a chain of non-
negative edges from z to y, as illustrated by this cartoon
(edges directed from x to y):

x y
- \ /+
- \ /+
- \ /+

z

This suggests that constraint enforcement in a dispatching
execution might involve paths that consist of some number
of negative edges followed by some number of non-negative
edges. In the following, we develop concepts that lead to a
rigorous derivation of this result.
Definition 9 A hinge point with respect to a pair <x, y> of
timepoints is an interior point z on a shortest path from x to
y such that d(x,z) is non-negative and d(z,y) is negative, as
illustrated (edges directed from x to y):

hinge-point
z

/ \
+v / \ -u

/ \
x y

z is distinct from x and y

Intuitively, the significance of this is that there can be a
dispatching execution where x and y are executed before
the hinge point z. Any propagation through z will occur
after x and y have already been executed. Consequently, that
path will not enforce the constraint between x and y in all
dispatching executions. This leads to the following lemma.
Lemma 2 Given a consistent STN and timepoint pair
<x, y>, suppose there is a set H of timepoints such that ev-
ery shortest path from x to y passes through exactly one of
the points in H, and that point is a hinge point for the path.
Then there is a strongly past-complete execution-sequence
whose partial schedule cannot be extended to a solution.
Proof: Consider a modified STN where, on each shortest
path from x to y, the edge immediately following the point z
in H has its length increased by some amount δ > 0. Thus,
the shortest paths to y following z have their total distance
increased by δ, as illustrated.



-u + δ +v
y <-------- z <------- x

hinge-point

Since distances are only increased, the STN is still con-
sistent. (There are no negative cycles.) Note that δ can be
chosen to be sufficiently small such that (i) every original
shortest path from x to y is still a shortest path, and (ii) the
− u + δ values are still negative.

Define a partial schedule S by setting S(x) to an arbitrary
value and S(q) = S(x) + d′(x, q) for each q on a shortest
path from x to y, where d′(x, q) is the shortest path dis-
tance from x to q in the modified STN. By construction, S
is locally consistent with respect to the minimal (AllPairs)
network for the modified STN; thus, it can be extended to
a solution S′ (Dechter, Meiri, and Pearl 1991). However,
S is inconsistent with respect to the original STN because
S(x) − S(y) = −(d(x, y) + δ) where d(x, y) is the short-
est path distance from x to y in the original STN. Note that
S(z) ≥ S(x) and S(z) > S(y) for each z in H.

Now let E′ be a complete execution sequence for the mod-
ified STN that corresponds to the above solution S’. Since
S(z) ≥ max(S(x), S(y)) for each z in H, we can choose
E′ so that z comes after both x and y in the sequence. Con-
sider the prefix E of E′ up to and including x or y, whichever
comes later. Thus, latest(E) = max(S(x),S(y)). Since E is a
prefix of a solution, it is locally consistent and strongly past-
complete for the modified STN.

Note that E does not include any of the timepoints z in H,
and the modified constraints emanate from those timepoints.
Thus, the constraints that determine both local consistency
of E and upper(E,w), for any w, are the same for the orig-
inal as for the modified STN.5 Consequently, E is also lo-
cally consistent and strongly past-complete with respect to
the original STN. However, the partial schedule of E coin-
cides with S on x and y, and we have shown these values
are inconsistent with respect to the original STN. Thus, the
partial schedule of E cannot be extended to a solution. 2

This prepares the way for the following.

Definition 10 Given an STN a vee-path is a shortest path
in the distance graph that consists of a subpath (possibly
empty) of negative edges followed by a subpath (possibly
empty) of non-negative edges.

The intuition behind the name is that a chain of negative
edges points backward in time while a chain of active non-
negative edges points forward in time, where time is visu-
alized as proceeding upwards. Note that every subpath of a
vee-path is itself a vee-path.

The following propertties will also be useful.

Definition 11 Given an STN a vee-zero-path is a shortest
path in the distance graph that consists of a subpath (possi-
bly empty) of non-positive edges followed by a subpath (pos-
sibly empty) of non-negative edges.

Definition 12 Given timepoints x and y, a hook-path is ei-
ther a non-negative shortest path that ends with a non-

5The modified edges, which are negative, could potentially af-
fect lower(E,w) but that does not matter for the conclusion.

negative edge, or a negative shortest path that starts with
a negative edge.

It is not hard to see that every vee-path must also be a
hook-path.

We are now ready for the main theorem containing several
characterizations of dispatchability.

Theorem 2 The following conditions are equivalent for a
consistent STN:

(i) The STN is dispatchable.
(ii) Every strongly past-complete execution-sequence can

be extended to a solution.
(iii) For every pair <x, y> of timepoints, if d(x,y) is finite,

there is a hook-path from x to y.
(iv) For every pair <x, y> of timepoints, if d(x,y) is finite,

there is a vee-path from x to y.

Proof: (i) => (ii)
As we have noted, any strongly past-complete execution

sequence is also weakly past-complete. Thus, it can be ex-
tended to a complete execution sequence if the STN is dis-
patchable.

(ii) => (iii)
We will show if (iii) does not hold then (ii) cannot hold.
Suppose (iii) does not hold. Thus, d(x, y) is finite, but

there is no hook path from x to y.
Consider first the case where d(x, y) is non-negative.

Then each shortest path from x to y ends with a negative
edge. Thus, the points z immediately preceding y on each
shortest path from x constitute a set of hinge points H. More-
over, each shortest path from x to y passes through exactly
one point in H. Thus, we can apply Lemma 2 to conclude
(ii) does not hold.

Otherwise, d(x, y) is negative. Then each shortest path
from x to y starts with a non-negative edge. In this case, the
points z immediately following x constitute a set of hinge
points such that each each shortest path from x to y passes
through exactly one of them. Again we can apply Lemma 2
to conclude (ii) does not hold. The result follows.

(iii) => (iv)
We prove the result in two stages. First we show there is a

vee-zero-path from x to y. Then we show there is a vee-path.
Consider a modified STN where all explicit all-zero cy-

cles are contracted to a single timepoint. Thus, the modified
STN is free of all-zero cycles.

Consider any two timepoints x = x0 and y = y0. By (iii),
if the distance between x0 and y0 is negative, then there is a
shortest path between them that starts with a negative edge;
if non-negative, there is a shortest path that ends with a non-
negative edge. In the first case define x1 to be the point on
the path after x0 and define y1 = y0. In the second case
define x1 = x0 and define y1 to be the point on the path
before y0.

If x1 is not equal to y1, we can repeat the application of
(iii) to the x1, y1 pair to define x2 and y2, and so on. Note
that there can be no repetition in the x0, x1, x2, ... sequence,
since that would imply a negative cycle. Also, there cannot
be a repetition in the y0, y1, y2, ... sequence, since that would
imply an all-zero cycle. (If a shortest path of non-negative
edges contains a cycle, the edges in the cycle must all have



zero length; otherwise, the path could be further shortened
by omitting the cycle.)

Since there be no repetitions (and the STN has a finite
number of timepoints), the applications of (iii) must eventu-
ally terminate when some xN = yN . This implies a vee-path
between x and y. In the original STN (where all-zero cycles
have not been contracted) this will correspond to a vee-zero-
path between any pair of timepoints. (Since one or more of
the timepoints in the negative segment may have arisen from
a contraction.)

Now let x and y be any two timepoints in the original
STN. Among the shortest paths from x to y, there must be
one that has the largest number of initial consecutive neg-
ative edges. Suppose x′ is the end timepoint of that initial
sequence of negative edges. If x′ = y, we are done. Oth-
erwise, there must be a vee-zero-path VZ from x′ to y. If
VZ contains a negative edge, it must be somewhere in the
negative-or-zero segment. Thus, there must be an interme-
diate point y′ between x′ and y such that the path from x′ to
y′ is negative. But then (iii) implies there is a shortest path
from x′ to y′ that starts with a negative edge, which gives us
a path from x to y with a greater number of initial negative
edges, which is a contradiction. We conclude that VZ con-
tains only non-negative edges, and the initial negative path
to x′ followed by VZ constitutes a vee-path from x to y.

(iv) => (i)
Suppose there is a vee-path between every pair of time-

points. Within the framework of MMT, dispatchability
would be then assured because the vee-paths would dom-
inate all the edges in the AllPairs Shortest-Path network.
However, within our formal framework, a somewhat differ-
ent proof approach is needed.

Our strategy will be to show each dispatch sequence E is
(1) super past-complete and (2) path-consistent with respect
to the STN. The result will then follow from Theorem 1.

Suppose otherwise for some E =<{a1, ..., an}, S>. If
condition (1) is violated then there is some x in E and y
not in E such that S(x) + d(x, y) < S(an). If condition
(2) is violated then there is some x and y in E such that
S(x) + d(x, y) < S(y). Define Ŝ(y) = S(y) if y is in E,
and Ŝ(y) = S(an) otherwise. Then both types of violation
are captured by the expression S(x) + d(x, y) < Ŝ(y). (For
future reference, note that Ŝ(y) ≤ S(an).)

Without loss of generality, we can choose a violation node
y that minimizes d(x, y), i.e., such that

d(x, y) = min{d(x, z) : S(x) + d(x, z) < Ŝ(z)}.
By hypothesis, there is a vee-path from x to y. Since a vee-
path is a shortest path, the d function can be used to mea-
sure local distance along the vee-path.

Suppose z is the last node on the vee-path such that the
nodes on the subpath from x to z are all in E. Since all the
nodes in the negative portion of the vee-path constitute a
chain of direct predecessors of x and so are in E, z must lie
in or begin the non-negative portion. By local consistency
of E, S(x) + d(x, z) = S(z), so z 6= y. Also, S(z) ≤
S(x) + d(x, y) < Ŝ(y) ≤ S(an), so z 6= an and z is in
En−1. Now consider the node w immediately following z

in the vee-path. Combining the previous inequalities with
d(x,w) ≤ d(x, y), and the vee-path direct edge from z to
w, we get

upper(En−1, w) ≤ S(z) + d(z, w) < S(an).

It follows that w cannot be in enabled(En−1); otherwise
an would fail the MIN-UPPER condition for a dispatch se-
quence.

Since w is not in enabled(En−1), it must have a direct
predecessor v that is not in En−1. Thus, either v = an or
v is not in E. In either case, Ŝ(v) = S(an). We also have
d(x, v) < d(x,w) since there is a negative edge from w to
v. It follows that

S(x) + d(x, v) < S(x) + d(x,w)
≤ S(x) + d(x, y)

< Ŝ(y)
≤ S(an)

= Ŝ(v).

Since d(x, v) < d(x,w) ≤ d(x, y), this contradicts the min-
imality of y.

This, we have established that each dispatch sequence E
is both path-consistent and super past-complete. It then fol-
lows from Theorem 1 that the network is dispatchable. 2

Closing Remarks
Reduction rules in previous work (Shah et al. 2007; Nils-
son, Kvarnström, and Doherty 2013; Morris 2014) establish
vee-paths between nodes, ensuring dispatchability, but may
add more edges than needed. Note that Theorem 2 part (iii)
shows that an edge from x to y in a dispatchable network is
unneeded for dispatchability provided there remains an al-
ternative hook path from x to y. This provides an analogue
of MMT dominance that can be used to prune unneeded
edges, while avoiding the issues mentioned earlier.

These results may potentially be helpful in generalizing
notions of Dynamic Controllability (DC) to multi-agent in-
teractions. For example, with two agents where one may
observe the outcomes of the other, the consistent sched-
ules of the non-observing agent are analogous to the pro-
jections of DC. We conjecture that ensuring dispatchability
of these generalized projections may constitute a dynamic
strategy for the observing agent. Previous temporal decou-
pling work (Hunsberger 2002) is static and does not take
advantage of observation.

Dispatchable networks have interesting properties from
the point of view of constraint satisfaction. They have an
extensibility property for partial schedules resembling that
of the minimal network (Dechter, Meiri, and Pearl 1991) but
with the added twist of an asymmetry with respect to the
time parameter, i.e., an inherent “arrow of time.”

References
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–95.



Hunsberger, L. 2002. Algorithms for a temporal decoupling
problem in multi-agent planning. In Proc. of Eighteenth Nat.
Conf. on Artificial Intelligence (AAAI-02).
Morris, P.; Schwabacher, M.; Dalal, M.; and Fry, C. 2013.
Embedding temporal constraints for coordinated execution
in habitat automation. In International Workshop on Plan-
ning and Scheduling for Space.
Morris, P. 2014. Dynamic controllability and dispatchability
relationships. In CPAIOR.
Muscettola, N.; Nayak, P.; Pell, B.; and Williams, B. 1998.
Remote agent: to boldly go where no AI system has gone
before. Artificial Intelligence 103(1-2):5–48.
Muscettola, N.; Morris, P.; and Tsamardinos, I. 1998. Refor-
mulating temporal plans for efficient execution. In Proc. of
Sixth Int. Conf. on Principles of Knowledge Representation
and Reasoning (KR’98).
Nilsson, M.; Kvarnström, J.; and Doherty, P. 2013. Incre-
mental Dynamic Controllability Revisited. In Proceedings
of the 23rd International Conference on Automated Plan-
ning and Scheduling (ICAPS). AAAI Press.
Shah, J. A.; Stedl, J.; Williams, B. C.; and Robertson, P.
2007. A fast incremental algorithm for maintaining dis-
patchability of partially controllable plans. In Boddy, M. S.;
Fox, M.; and Thibaux, S., eds., ICAPS, 296–303. AAAI.
Tsamardinos, I.; Muscettola, N.; and Morris, P. 1998.
Fast transformation of temporal plans for efficient execu-
tion. In Proc. of Fifteenth Nat. Conf. on Artificial Intelli-
gence (AAAI-98).


