Modeling of the Orbital Debris Environment Risks in the Past, Present, and Future

Mark Matney, Ph.D.
Orbital Debris Program Office
NASA Johnson Space Center
Orbital Debris Types

- **Intact objects, > 1 m**
 - Old rocket bodies
 - Spacecraft
 - "Operational" debris – shrouds, mounts, lens caps, etc

- **Fragmentation debris, 1 mm – 1 m**
 - Deliberate or accidental explosions from on-board energy sources
 - Unvented rocket fuel
 - Active batteries
 - Self-destruct mechanisms
 - Deliberate or accidental collisions
 - Weapons tests
 - Random collisions
 - Solid rocket motor slag

- **Degradation debris, < 1 mm**
 - Deterioration of satellite surfaces in space environment
 - Micrometeoroid and small debris impact ejecta
 - Paint deterioration in harsh space environment
Modeling

- NASA and the U.S. Dept. of Defense dedicate a tremendous amount of resources to measuring and monitoring the debris environment, but measurements do not always provide all the information we need
 - Radars provide radar cross section (RCS), not size, material, shape, or mass
 - Similarly, optical telescopes provide brightness of reflected sunlight
 - NASA uses a number of telescopes and radars to statistically sample only a subset of the environment
 - Statistical sampling is the only way to measure objects <10 cm too small to track
 - No matter how good or complete are our measurements, the orbital debris environment is dynamic. We cannot know with certainty what the environment will look like in the future

- The solution to these limitations is modeling
 - Modeling is the use of mathematical and compute tools to use the incomplete data we do have and determine the information we truly need
One of NASA’s “workhorse” models is **LEGEND**

LEGEND, a **LEO-to-GEO environment debris model**
- Is a high fidelity, three-dimensional numerical simulation model for long-term orbital debris evolutionary studies
- Replaces the previous one-dimensional, LEO only model, **EVOLVE**
- Includes intacts (R/Bs and S/C), mission-related debris (payload fairings, caps, etc.), and explosion/collision fragments
- Handles objects **individually**
- Is capable of simulating objects down to 1 mm in size, but the focus has been on ≥10 cm objects
- Covers altitudes up to 40,000 km
- Can project the environment several hundred years into the future
- Uses a deterministic approach to “recreate” the historical debris environment based on recorded launches and breakups
- Uses a Monte Carlo approach and a pair-wise collision probability evaluation algorithm to simulate future collision activities
- Analyzes future debris environment based on user-specified launch traffic, post-mission disposal, and active debris removal options
Similar OD Evolutionary Models

- **ASI’s SDM**: Space Debris Mitigation long-term analysis program
- **ESA’s DELTA**: Debris Environment Long-Term Analysis model
- **ISRO’s KSCPROP**: Kustaanheimo and Stiefel Canonical Propagation model
- **JAXA’s LEODEEM**: LEO Debris Environment Evolutionary Model
- **UKSA’s DAMAGE**: Debris Analysis and Monitoring Architecture for the Geosynchronous Environment
LEGEND Supporting Models

• LEGEND actually ties in many NASA models to do its calculations

• DBS database: a comprehensive record of historical launches and breakup events
 – Time, type, orbit, physical properties (mass, area), etc.
 – The database is updated annually

• U.S. Space Surveillance Network (SSN) catalogs
 – Daily records of the historical growth of the ≥10 cm debris population
 – Orbit histories are used to derive empirical area-to-mass ratio (A/M) distributions of breakup fragments
 – New files are downloaded from “Space Track” website daily

• Future launch traffic model
 – Typically a repeat of the last 8-year cycle, as commonly adopted by the international debris modeling community
LEGEND Supporting Models

- **Atmospheric drag model**
 - Jacchia atmospheric density model (1977)
 - Drag perturbation equations based on King-Hele (1987)

- **Solar flux (at 10.7 cm wavelength) model consisting of three components**
 - Historical daily records available from the National Oceanic and Atmospheric Administration (NOAA) Space Weather Prediction Center (SWPC)
 - Short-term projection provided by NOAA/SWPC – currently through 2019
 - Long-term projection is a repeat of a 13th-order sine and cosine functional fit to Solar Cycles 18 to 24 (1944 – present)
 - Similar to projections developed for long-term debris evolutionary models by other space agencies (ASI, UKSA, etc.)
• **GEOprop orbital propagator**
 - Propagates objects near geosynchronous (GEO) region
 - Perturbations include solar and lunar gravitational forces, solar radiation pressure, and Earth’s gravity-field zonal \(J_2, J_3, \) and tesseral \(J_{2,2}, J_{3,1}, J_{3,3}, J_{4,2}, \) and \(J_{4,4} \) harmonics

• **Prop3D orbit propagator**
 - Propagates orbits of objects in LEO and GTO regions
 - Perturbations include atmospheric drag, solar and lunar gravitational forces, solar radiation pressure, and Earth’s gravity-field zonal harmonics \(J_2, J_3, \) and \(J_4 \)

• **Both propagators compare reasonably well with the evolution of the SSN cataloged objects**
LEGEND Supporting Models

- NASA Standard Satellite Breakup Model
 - Describes the outcome of an explosion or collision
 - Fragment size, A/M, and ΔV distributions
 - Based on seven, well-observed on-orbit explosions, several ground-based impact experiments, and one on-orbit collision
LEGEND is the tool the NASA Orbital Debris Program Office uses to

- Provide debris environment projection for the next 200 years
 - Based on user-specified scenarios (launch traffics, postmission disposal, active debris removal options, etc)

- Evaluate the instability of the current debris environment

- Assess the growth of the future debris populations

- Characterize the effectiveness of the NASA, U.S., and international debris mitigation measures

- Quantify the benefits of active debris removal (ADR)
Mass Accumulation in Orbit – Based on DBS

Monthly Mass of Objects in Earth Orbit by Object Type

- Total Objects
- Spacecraft
- Rocket Bodies
- Fragmentation Debris
- Mission-related Debris
Sample LEGEND Output – Collisions in LEO

LEGEND Projections (averages from 100 MC runs)

- **Reg Launches, No PMD**
- **Reg Launches + 90% PMD**
- **No Future Launches**
- **Historical**
- **Data (excl. Cerise)**

Cumulative Number of Collisions (≥10 cm objects, LEO)

Year

Growth with no future launches

Kessler Syndrome

Effective Number of Objects (>10cm, LEO)

- Total
- Intacts + mission related debris
- Explosion fragments
- Collision fragments

Year

"Well, I'll be ... I guess the little chicken was right."
Gravity
Gravity
Fix the Problem? – Remove Mass

LEO Environment Projection (averages of 100 LEGEND MC runs)

- Reg Launches + 90% PMD
- Reg Launches + 90% PMD + ADR2020/02
- Reg Launches + 90% PMD + ADR2020/05

(Liou, Adv. Space Res, 2011)
Highest Mass Objects

Top 500 Current R/Bs and S/Cs

- **SL-16 R/B (8900 kg)**
- **Cosmos (3300 kg)**
- **SL-8 R/B (1400 kg)**
- **Cosmos (1300 kg)**
- **SL-8 R/B (1400 kg)**
- **SL-3 R/B (1440 kg)**
- **METEOR (2000 kg)**
- **SL-8 R/B (1400 kg)**
- **METEOR (2200-2800 kg)**
- **SL-8 R/B (1400 kg)**
- **Cosmos (2000 kg)**
- **Cosmos (2500 kg)**

Various R/Bs and S/Cs (SL-16 R/B, Envisat, etc., 1000-8900 kg)

Envisat

SL-8 2nd stage

(Liou, Adv. Space Res, 2011)
Active Debris Removal Cartoon, 1965 (!)
• An Engineering Model is a tool (primarily) for spacecraft designers and users to understand the long-term risks of debris collisions with their spacecraft

• NASA’s Orbital Debris Engineering Model ORDEM 3.0 represents NASA’s best estimate of the current and near future orbital debris environment.
 – The environment is dynamic and must be updated periodically

• ORDEM 3.0 has significant new capabilities over past ORDEM models
 – Uncertainties
 – Material density categories
 – Model extended to GEO
 – Can easily calculate flux for satellites in highly elliptical orbit
ORDEM 3.0 vs. ORDEM2000

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ORDEM2000</th>
<th>ORDEM 3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacecraft & telescope/radar analysis modes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time range</td>
<td>1991 to 2030</td>
<td>2010 to 2035</td>
</tr>
<tr>
<td>Altitude range with minimum debris size</td>
<td>200 to 2000 km (>10 μm) (LEO)</td>
<td>200 to 38,000 km (>10 μm) (LEO to GTO)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34,000 to 38,000 km (>10 cm) (GEO)</td>
</tr>
<tr>
<td>Orbit types</td>
<td>Circular (radial velocity ignored)</td>
<td>Circular to highly elliptical</td>
</tr>
<tr>
<td>Model populations divided by type & material density</td>
<td>No</td>
<td>Intacts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Low-density (<2 g/cc) – e.g., plastic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Medium-density (2-6 g/cc) – e.g., aluminum</td>
</tr>
<tr>
<td></td>
<td></td>
<td>High-density (>6 g/cc) – e.g., steel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>RORSAT NaK coolant droplets (0.9 g/cc)</td>
</tr>
<tr>
<td>Special model populations</td>
<td>No</td>
<td>Yes (ASAT, Iridium/Cosmos, Snapshot, Transit)</td>
</tr>
<tr>
<td>Model cumulative size thresholds (fiducial points)</td>
<td>10 μm, 100 μm, 1 mm, 1 cm, 10 cm, 1 m</td>
<td>10 μm, 31.6 μm, 100 μm, 316 μm, 1 mm, 3.16 mm, 1 cm, 3.16 cm, 10 cm, 31.6 cm, 1 m</td>
</tr>
<tr>
<td>Flux uncertainties</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Meteoroids</td>
<td>No</td>
<td>No*</td>
</tr>
</tbody>
</table>

* a separate meteoroid environment model (MEM) is available from NASA’s Meteoroid Environment Office
ORDEM Process
Creating the Current Environment

• Initial environment created by using database of known space activity and tools such as the NASA Standard Breakup Model (to model breakup clouds) & PROP3D (to model long-term orbit evolution)

• Environment-dominating events such as the Chinese ASAT (~850 km) and the Iridium/COSMOS collision (~775 km) were modeled separately as were a few unique non-breakup populations

• Debris material densities
 – For sub-mm debris - determined from analysis of residue in impact features from returned spacecraft surfaces (specifically, Shuttle windows and radiators)
 – For larger debris - directly measured from ground impact tests

• Maximum Likelihood Estimator used to empirically fit the environment to measurement data, creating a final “Current” debris environment
 – This resulted in adjusting model populations to fit data using size-dependent “weighting factors”
 – Size-dependent weighting factors derived from these data-fitting processes are used to project into the future
 – Uncertainties computed using Bayesian and other techniques
Shuttle *In Situ* Data

- Conchoidal spall
- Central pit defined by densely packed crushed glass
- Large, shallow crater (roughly circular in this example)
- Outer limits of larger crater and impact event influence

Facesheet hole (d_{max})

Facesheet hole (d_{min})
ORDEM 3.0 Datasets and Supporting Models

<table>
<thead>
<tr>
<th>Observational Data</th>
<th>Role</th>
<th>Region/Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSN catalog (radars, telescopes)</td>
<td>Intacts & large fragments</td>
<td>LEO > 10 cm, GEO > 70 cm</td>
</tr>
<tr>
<td>HAX (radar)</td>
<td>Statistical populations</td>
<td>LEO > 3 cm</td>
</tr>
<tr>
<td>Haystack (radar)</td>
<td>Statistical populations</td>
<td>LEO > 5.5 mm</td>
</tr>
<tr>
<td>Goldstone (radar)</td>
<td>Statistical populations</td>
<td>LEO > 3 mm</td>
</tr>
<tr>
<td>STS windows & radiators (returned surfaces)</td>
<td>Statistical populations</td>
<td>10 μm < LEO ≤ 1 mm</td>
</tr>
<tr>
<td>MODEST (telescope)</td>
<td>GEO data set</td>
<td>GEO > 30 cm</td>
</tr>
</tbody>
</table>

- Note that the US Space Shuttle is no longer an active data source
• Small particle populations are fit separately from large particle populations
• LEGEND used to propagate the “Current” environment into the future

• Populations empirically adjusted to match radar and optical measurement data

• When LEGEND creates new future debris (through future collisions or explosions) the same weighting values that were used to fit historical size distributions are applied to debris production in the future

• Launch rate, solar activity, and explosion rate are independent inputs into the model

• 120 Monte Carlo future environments are created
 – Future collisions simulated stochastically

• Reported future environment is the average of the 120 possible future environments, “spread” of possible futures preserved as population uncertainties
• LEGEND used to characterize the population of intact objects in the future as source objects for small debris

• The surface degradation model “creates” particles with zero delta-velocity at different sizes and material types proportional to the area of the parent body

• These debris are propagated under solar radiation pressure and atmospheric drag to compute flux on in situ surfaces

• Damage equations (based on empirical tests) are used to “predict” distribution in feature size (e.g., crater diameter) on the in situ surface using reference debris population

• Production rates at the parent bodies adjusted to match empirical data
Average Cross-Sectional Flux vs. Size

Year: 2013 Perigee Altitude = 400.000 Apogee Altitude = 400.000 inc = 51.60
Material Distributions - ISS

ORDEM Populations for 2013 ISS Flux as a Function of Debris Size

- ORDEM 3.0 LD Population
- ORDEM 3.0 MD Population
- ORDEM 3.0 HD Population
- ORDEM 3.0 Total Population
- ORDEM 2000
ORDEM Flux for A-Train 705km
Material Distribution – A-Train

ORDEM Populations for 2013 98° 705 km Orbit Flux as a Function of Debris Size

- ORDEM 3.0 LD Population
- ORDEM 3.0 MD Population
- ORDEM 3.0 HD Population
- ORDEM 3.0 Total Population
- ORDEM 2000

Flux [m² yr⁻¹]

Debris Size [m]
ORDEM 3.0 Outputs

2-D Directional Flux

Year: 2013 Perigee Altitude = 400.000 Apogee Altitude = 400.000 inc = 51.60 particle size = >1mm

Local Elevation (deg)

Local Azimuth (deg)

7/23/2013 5:06:05 PM
ORDEM 3.0 Outputs

Flux vs. Local Azimuth

Year: 2013 Perigee Altitude = 400,000 Apogee Altitude = 400,000 inc = 51.60 particle size = >1cm
National Aeronautics and Space Administration

BUMPER
NASA/JSC BUMPER-II Meteoroid/Debris Threat Assessment Code

Spacecraft Configuration (I-DEAS Finite Element Model)
- Describes spatial relationships of spacecraft components
- Defines spacecraft orientation (velocity and zenith directions)
- Defines M/OD shield regions

Meteoroid & Debris Environments (GEOMETRY)
- Threat directions
- Velocity distribution
- Shadowing

- Approximately 120,000 elements in ISS assembly complete mated configuration FEM

Critical Particle Diameter Calculation (RESPONSE)
- Protection capability

Computation of Penetrating Flux and PNP (SHIELD)
Graphical Interpretation of Results (EXCEL & I-DEAS)

Space Station Orbital Debris Threat Assessment

<table>
<thead>
<tr>
<th>Station Region</th>
<th>Impact Risk From 1-sizes @ Earth</th>
<th>Prob. No. Impact</th>
<th>Out-of-impact</th>
<th>Prob. No. Penetration</th>
<th>Out-of Penetration</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISS</td>
<td>0.9999580</td>
<td>0.14</td>
<td>0.9999857</td>
<td>0.14</td>
<td>0.999976</td>
</tr>
<tr>
<td>Node 2</td>
<td>0.9999905</td>
<td>0.05</td>
<td>0.9999983</td>
<td>0.05</td>
<td>0.999939</td>
</tr>
<tr>
<td>HUB Module</td>
<td>0.9999874</td>
<td>0.03</td>
<td>0.9999929</td>
<td>0.03</td>
<td>0.999945</td>
</tr>
<tr>
<td>Lab Module</td>
<td>0.9999925</td>
<td>0.02</td>
<td>0.9999920</td>
<td>0.02</td>
<td>0.999943</td>
</tr>
<tr>
<td>IUS</td>
<td>0.9999840</td>
<td>0.01</td>
<td>0.9999900</td>
<td>0.01</td>
<td>0.999940</td>
</tr>
</tbody>
</table>

TOTALS
- 0.9946882
- 0.999132
- 0.999146
Collision Avoidance

- Orbiting objects larger than about 10 cm are tracked by the U.S. Dept. of Defense (DoD) Space Surveillance Network (SSN)

- Current statistical technique was developed as a joint project by the DoD and NASA to ensure the safety of Shuttle and ISS astronauts

- Service now provided to any space user
 - Possible conjunction warning given to registered user
 - Contains the covariance matrix and encounter geometry for each object
 - Covariance matrix gives uncertainty ellipsoid of the position of each object
 - Information can be used to compute a probability of collision

- For every object tracked, there are tens to hundreds of objects we cannot track that can still cause serious damage to a spacecraft
 - Collision avoidance is prudent, but does not solve the debris problem

- Vast majority of objects tracked (~95%) are inert and cannot maneuver
 - Not a solution for problem of long-term collisional growth
Reentry Modeling

- NASA’s ORSAT code is used to assess the survivability of reentering objects in order to account for risk to ground population.

- Cases are run in hierarchy beginning with parent body and then moving on to components and sub-components if necessary.

- User makes decisions on how components are modeled:
 - Breakup altitude
 - Component shape selection
 - Component motion
 - When component heating begins

- Options exist to run parametric study on specific variables:
 - Oxidation efficiency
 - Initial wall temperature
 - Surface emissivity
 - Breakup altitude
ORSAT Code Structure

- Six general modules in code:
 - **Trajectory**
 - Recently updated in ORSAT 6.0 and 6.1 from Miehle method to Vinh
 - **Atmosphere**
 - Chosen from 3 models or input a user-defined model
 - Difference between 3 models is small due to only small changes in density
 - **Aerodynamics**
 - Recent updates to low altitude/Mach number drag coefficients
 - **Aerothermodynamics**
 - Detra-Kemp-Riddell or Fay-Riddell (small variations in results)
 - Stagnation point heating is well developed
 - Averages and 3D distributions over various shapes
 - **Thermal**
 - Different modes can lead to different results
 - **Debris Casualty Area / Risk**
Recent Reentries
UARS, ROSAT, Phobos-Grunt, TRMM
UARS Reentry in the Popular Imagination

NASA says a dead satellite will crash to Earth soon. The odds that it will hit anyone are miniscule.

I just hope the news media doesn't over-play this.

Next: A satellite is falling to Earth: why you are probably doomed.

Sky is falling?

Yes, a satellite is falling to Earth, but it will break up into debris.

Aahhh! Debris!

And don't worry, most of that will burn up as it enters our atmosphere.

Aahhh! Flaming debris!
BREWSTER ROCKIT: SPACE GUY!

CLIFF, ARE YOU FAMILIAR WITH ORBITAL DECAY?

"It's where atmospheric drag slows and reduces the altitude of Earth-orbit spacecraft until they fall back to Earth."

ORBIT

"Occasional altitude boosts are needed to keep spacecraft in their orbit."

SINCE YOU'RE OUR SPACE STATION'S ENGINEER, I GUESS YOU KNEW THIS?

NOPE. I DIDN'T KNOW THAT.

WELL, THAT EXPLAINS A LOT.
That Which Survives…

Texas, 1997
South Africa, 2000
Zimbabwe, 2013
Guatemala, 2003
Argentina, 2004
Saudi Arabia, 2001
Reentry of the Jules Verne ATV

- NASA and ESA conducted a joint observation campaign of the reentry of the Jules Verne ATV on 29 September 2008.
 - Two aircraft collected a wide variety of data from vantage points over the Pacific Ocean near the reentry path of the Jules Verne.
Population Distribution on the Earth

- Gridded Population of the World, version 3 (GPWv3)
- Socioeconomic Data and Applications Center (SEDAC) at Columbia University
- \(2.5 \times 2.5\) arc minute cells = \(4.6\) km\(\times\)4.6 km cells at the Equator
- Reference years 1990-2015 in 5-year intervals
Average Density of People Below Satellite Path

Inclination-Dependent Latitude-Averaged Population Density

Average Population Beneath Satellite Path [per square km]

Inclination °

2000 Population
2050 Population
Probability of Falling in Populated Areas

Population Density \([\text{km}^{-2}]\)

Probability of Reentry Occurring in a Region With a Given Population Density or Greater

98 Degree Inclination
51.6 Degree Inclination
28.5 Degree Inclination

Mongolia
Easter Island
Liechtenstein
Vatican City
Hong Kong
Manhattan
Probability of Ocean Reentry

[Graph showing probabilities of satellite reentry avoiding land based on orbit inclination.]
Brewster Rockit on Reentry Risks

IF YOUR SATELLITE CRASHES TO EARTH, IT'LL SPILL ITS TOXIC FUEL. DOES IT HAVE A SELF-DESTRUCT MECHANISM?

HUH?

SOMETHING THAT WILL MAKE THE SATELLITE BREAK APART?

OH, SURE.

GREAT! WHAT IS IT?

THE GROUND.
Conclusions

• Monitoring the Earth space environment is insufficient to understand the risks posed by debris
 – Never observe all the debris characteristics you need
 – Cannot see the entire environment
 – Must be able to make predictions about the future

• Modeling permeates all aspects of orbital debris studies

• Models provide users with tools to design their spacecraft to survive the debris environment

• Models provide policy makers with tools to be able to make informed decisions about guidelines and regulations concerning space activities

• Models are only as good as the assumptions made and the quality of the data behind them
Questions?

HOW TO TELL WHEN MAN HAS OFFICIALLY CONQUERED SPACE
Backup
Data Compilation

Orbital Debris Environment

Cross-sectional Flux of a Given Size and Larger [Number/m^2 - Yr]

Diameter [cm]
Breakup Model

• NASA’s Breakup Model can be used to simulate the evolution of individual breakups

• On August 6, 2012, the Russians attempted to launch two communications satellites using a Proton rocket

• The BRIZ-M upper stage failed to burn properly, and was left stranded in an elliptical orbit with about 5 metric tons of its propellant still aboard

• On October 16, the rocket body exploded, creating at least 700 trackable pieces of debris (and probably many more too small to be tracked) in orbits that cross ISS altitude

• Observed by astronomers at the Siding Springs Observatory
BRIZ-M Explosion
February 10, 16:56 GMT two satellites collided near 789 km altitude

Iridium 33 (24946, 97051C)
779 x 808 km, 86.4° orbit, 556 kg
Operational US Commercial Communication Satellite

Kosmos 2251 (22675, 93036A)
786 x 826 km, 74.0° orbit, 900 kg
Non-operational Russian Communication Satellite
2009 Collision