Initial Satellite Formation Flight
Results from the
Magnetospheric MultiScale Mission

Trevor Williams,¹ Neil Ottenstein,² Eric Palmer,² and Mitra Farahmand²

¹NASA/Goddard Space Flight Center, and ²a.i. solutions, Inc.

SPACE 2016, AIAA/AAS Astrodynamics Specialist Conference, Long Beach, CA
Introduction

- MMS Formation Flying Dynamics
- MMS Onboard Navigation System
- Formation Maneuver Design Process
- Formation Maneuver Execution Process
- Formation Maneuver Results
MMS Spacecraft

- Width: 3.15 m
- Height: 1.23 m
- Weight: ~ 1,290 kg
- SDP-Wire Booms (x4): 60 m
- ADP-Antenna Mast (x2): 14.75 m
- Magnetometer Booms (x2): 5 m

1. SDP-Wire Booms
2. ADP-Antenna Masts
3. Magnetometer Booms
Formation at Apogee
Formation at Perigee
MMS Onboard Nav System: GEONS

• GEONS processes GPS L1 signals in an Extended Kalman Filter (EKF) and uses a high-fidelity dynamics model to estimate the spacecraft’s position, velocity, clock bias with respect to GPS time, clock bias rate, and clock bias acceleration.

• GEONS predictive performance and maneuver planning capability were evaluated by comparing definitive data with the predictive solutions generated in FreeFlyer 6.9.1.
GEONS vs Predicted Solutions Differences

NavQA Ephemeris Difference M1A
REF: Deploy.GGSS.NavQA.ITPSYPP.Ephom

Time Series with daily mean and 99% confidence intervals

Period-folded by Mean Anomaly [Deg] with mean and 99% confidence intervals
Number of GPS Space Vehicles Tracked
Formation Maneuver Design

- Target formation has shape of a regular tetrahedron in the region-of-interest (ROI) (TA ~160-200 deg)
- Instantaneous quality factor \(Q(t) \in [0,1] \) which is a product of two terms
 - \(Q_s(t) \) associated with scale size (allows for ‘breathing’)
 - \(Q_v(t) \) measures how close the shape is to a regular tetrahedron
- Science requirement \(T_Q \), the time the formation spends in the ROI with a \(Q(t) \) above 0.7
 - \(T_Q \in [0,100] \); Current science requirement is to have \(T_Q > 80 \), on average, for each mission phase

\[
Q(t_i) = Q_s(t_i) Q_v(t_i)
\]

\[
T_Q = \frac{100}{N_{ROI}} \sum_{i=1}^{N_{ROI}} M_i \quad \text{where} \begin{cases} M_i = 1 & \text{if } Q(t_i) \geq 0.7 \\ M_i = 0 & \text{if } Q(t_i) < 0.7 \end{cases}
\]
Formation Man. Execution Process (1/2)

- Perform preliminary design of maneuvers
- Decide the staggering sequence and reference spacecraft
- Check the results based on daily OD data and the FDA reruns
- Finalize the staggering sequence; submit this to scheduling/operations
- Deliver preliminary DV tables to GEONS team
- Perform preliminary and then final detailed simulation (using the tool CHiFi) to verify expected fuel use and check that the maneuvers do not violate any spacecraft safety constraints (boom bending moments, etc.)
- Evaluate the effects of the maneuvers on SMA values, orbit planes, QF evolution
- Perform Monte Carlo runs to determine safety in the face of maneuver execution errors, as well as QF lifetime
Formation Man. Execution Process (2/2)

• Present results at Command Authorization Meeting (CAM) that is held between the FOT and FDOA teams

• Monitor FM1 burns; reconstruct fuel use and SMA changes from spacecraft data downlinked at end of maneuver pass

• Use the navigation data downlinked at the post-perigee passes to evaluate maneuver errors and determine if tweaking of FM2 is necessary: if so, perform Delta-CAM and upload new maneuver commands

• Monitor FM2 burns; reconstruct fuel use and SMA changes from maneuver pass data

• Use nav data downlinked at the post-perigee passes to evaluate the final formation orbits ➔ initial data for the generation of the next set of maneuvers occurring in 2 or more weeks
Formation Side Length

Average of Mean values over ROI

Date of ROI Apogee

Side Length (km)

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

X No Formation
■ 160km
▲ 60km
■ 40km
■ 25km
■ 10km
Mean Instantaneous Sidelength in RoI (160 km)
Formation Quality Evolution Over Mission
Quality Factor Evolution, Two 40 km
Six Inter-Spacecraft Ranges Over Rev
SMA over Set of FM Maneuvers
Remaining Fuel Each Spacecraft
Delta-V Execution Error (Magnitude)
Delta-V Execution Error (Magnitude)
Delta-V Execution Error (Direction)
Conclusions

• MMS Formation Flying Dynamics
• MMS Onboard Navigation System
• Formation Maneuver Design Process
• Formation Maneuver Execution Process
• Formation Maneuver Results