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Abstract  26 

The cold (-13.4 ˚C), cryoencapsulated, anoxic, interstitial brine of the >27 m-thick ice of Lake 27 

Vida (Victoria Valley, Antarctica) contains 49 μg·L-1 of perchlorate and 11 μg·L-1 of chlorate. 28 

Lake Vida brine (LVBr) may provide an analog for potential oxychlorine-rich subsurface brine 29 

on Mars. LVBr volatiles were analyzed by solid-phase microextraction (SPME) gas 30 

chromatography-mass spectrometry (GC-MS) with two different SPME fibers. With the 31 

exception of volatile organic sulfur compounds, most other volatiles observed were artifacts 32 

produced in the GC injector when the thermal decomposition products of oxychlorines reacted 33 

with reduced carbon derived from LVBr and the SPME fiber phases. Analysis of MilliQ water 34 

with perchlorate (40 μg·L-1) showed low level of organic artifacts, reflecting carbon limitation. In 35 

order to observe sample-derived organic compounds, both in analog samples and on Mars, the 36 

molar abundance of reduced carbon in a sample must exceed those of O2 and Cl2 produced 37 

during decomposition of oxychlorines. This suggests that the abundance of compounds observed 38 

by the Sample Analysis at Mars (SAM) instruments in Sheepbed samples (CB-3, CB5, and CB6) 39 

may be controlled by an increase in the reduced-carbon/oxychlorine ratio of these samples. To 40 

increase chances of in situ detection of Martian organics during pyrolysis-GC-MS, we propose 41 

that the derivatization agents stored on SAM may be used as an external source of reduced 42 

carbon, increasing artificially the reduced-carbon to perchlorate ratio during pyrolysis, allowing 43 

the expression of more abundant and perhaps more diverse Martian organic matter.  44 

  45 
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1. Introduction 55 

Since the recent discovery of oxychlorines in surface sediments of Mars [Hecht et al., 56 

2009], the methylchloride (MeCl) and dichloromethane (DCM) observed in a Martian soil 57 

sample during the Viking missions upon thermal desorption and pyrolysis gas chromatography–58 

mass spectrometry (GC-MS) [Biemann et al., 1977] were reinterpreted to be the products of 59 

oxychlorine decomposition and reaction with Martian carbon during analysis [Navarro-Gonzalez 60 

et al., 2010]. The apparent ubiquity of oxychlorines on Mars surface [Archer et al., 2015; Stern 61 

et al., 2015; Ming et al., 2014; Hecht et al., 2009] is a challenge to our ability to detect and 62 

quantify organic compounds with the instruments dedicated to organic matter analysis on the 63 

Curiosity Rover. These instruments use thermal desorption and pyrolysis and, at temperatures 64 

exceeding 240 ˚C, oxychlorines decompose, oxidizing the available reduced carbon, and 65 

generating CO2, HCl as well as chlorinated organic species such as MeCl, DCM, and 66 

trichloromethane [TCM; Glavin et al., 2013; Leshin et al., 2013]. Both chlorinated and non-67 

chlorinated compounds detected at Rocknest and Yellowknife bay by the Sample Analysis at 68 

Mars (SAM) instruments on the Curiosity Rover were considered to be directly derived from the 69 

instrument itself or to be the products of oxychlorine degradation and reaction with organic 70 

components of the pyrolysis-trap-gas chromatography system used [Glavin et al., 2013; Leshin et 71 

al., 2013]. Additionally, the byproduct of oxychlorine degradation did react with N-methyl-N-72 

(tert-butyldimethylsilyl)-trifluoroacetamide (MTBSTFA), a leaking derivatizing agent [Leshin et 73 

al., 2013]. Recently, Freissinet et al. [2015] showed that the chlorinated compounds observed in 74 

the Sheepbed Mudstone at Gale Crater, chlorobenzene and dichloroalkanes, are derived from the 75 

reaction of Martian oxychlorines with Martian organic carbon. This hypothesis was supported by 76 

the greater abundance of these chlorinated compounds relative to those observed in previous 77 
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sediment samples analyzed, their absence from blanks, and the direct detection of chlorobenzene 78 

by Evolved Gas Analysis (EGA).  79 

For now, the abundance and diversity of all the compounds observed by SAM’s GC-MS 80 

are small. Benner et al. [2000] predicted that water cleavage by ultraviolet radiation would 81 

produce OH· and H· radicals able capable of oxidizing the organic matter brought to Mars via 82 

meteor, resulting in the formation of organic acids with recalcitrant end-products such as mellitic 83 

and phthalic acids. Benner et al. [2000] also suggest that surface diagenesis of organic matter 84 

derived from potential abiotic processes or from hypothetical life would follow the same level of 85 

oxidation, reducing considerably the potential diversity and abundance of organic compounds on 86 

the surface of Mars.  More recently, Stalport et al. [2010] showed that compounds such as 87 

mellitic and phthalic acids are not resistant to solar UV exposures.  In contrast, recent 88 

experiments by Poch et al. [2014] showed that some compounds such as chrysene or adenine are 89 

more resistant to the Martian radiation regime.  90 

The paucity of Martian organic compounds currently detected on Mars may also suggest 91 

that the reduced-carbon/oxychlorine molar ratio in Martian samples is generally small enough to 92 

prevent Martian organic compounds from being observed by pyrolysis-trap-GC-MS. In the 93 

presence of an excess of oxychlorines relative to reduced carbon during pyrolysis, organic 94 

compounds could completely oxidize to CO2 and C1-chlorinated compounds.   95 

Oxychlorines on Earth do not accumulate significantly away from desert regions because 96 

they are leached by precipitation water and are reduced biotically and abiotically [Coates and 97 

Achenbach, 2004]. The abundance of oxychlorines in surface sediments of Mars [from 0.1 to ~ 2 98 

weight % ClO4
-; Stern et al., 2015; see also Ming et al., 2014] suggests that neither microbial (if 99 

any) and abiotic reduction, nor leaching of these compounds is taking place at a significant rate 100 
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and thus suggests that the rate of oxychlorine formation exceeds that of their destruction [Catling 101 

et al., 2010]. On Mars, if the waters in which lacustrine sediments accumulated contained 102 

oxychlorines, interstitial waters of lacustrine sediments would also contain oxychlorines and 103 

upon water loss, the oxychlorines would have now precipitated at the surface of the sediments 104 

and within sediment pore space. Thus, it is likely that oxychlorines will be pervasive in all Mars 105 

surface lake sediments. Similarly, sub-glacial brines or interstitial brines on Mars would also 106 

contain oxychlorines, as these brines are the evaporation products of open water that would have 107 

contained oxychlorines.  In situ detection of perchlorates in the soils of polar Mars by the 108 

Phoenix Mars Lander [Hecht et al., 2009] led Fisher et al. [2010] to hypothesize that 109 

perchlorates may contribute to melting the base of the ice caps and generate brines. Further, 110 

Fisher et al. [2009] suggest that these oxychlorine-rich brines could collect, mobilize, and form 111 

networks of pools or interstitial brines within the sediments under the ice cap.   112 

The McMurdo Dry Valleys (MDVs; East Antarctica) constitute the largest area (~5000 113 

km2) of Antarctica not covered by glacier ice. The dry valleys are one of the driest and coldest 114 

environments on Earth with mean annual precipitation of less than 50 mm [Fountain et al., 115 

2010], sublimation exceeding precipitation, and mean annual temperatures ranging from -30 116 

to -14.8˚C on the valley floor [the low end of this range was recorded at Lake Vida; Doran et al., 117 

2002]. As a result, the dry valleys have been often considered to be an Earth analog to Mars past 118 

and present environments [e.g. Andersen et al., 1994; Bishop et al., 2013; Doran et al., 1998].  119 

Recently, aquifers were detected within the permafrost of some of the McMurdo Dry Valleys, 120 

Taylor Valley [Mikucki et al., 2015] and Victoria Valley [Dugan et al,. 2015a]. These subsurface 121 

aquifers may provide a terrestrial analog for potential subsurface brines on Mars. Lake Vida is 122 

located in Victoria Valley, the northern most of the McMurdo Dry Valleys. Lake Vida appears to 123 
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be entirely frozen [>27 m; Dugan et al., 2015b] and contains, 16 m below the surface, an 124 

interstitial brine at -13.4˚C that supports a slow but active bacterial ecosystem [Murray et al., 125 

2012]. This interstitial brine provides a window into a potential analog of Martian brine. The 126 

anoxic brine has a high dissolved organic carbon (DOC) concentration [48.2 ± 9.7 mmol·L−1; 127 

Murray et al., 2012].  128 

This manuscript reports on the concentrations of perchlorate and chlorate in the Lake 129 

Vida brine (LVBr) and discusses their significance in relation to the interpretation of organic 130 

matter analysis on Mars. Specifically, the artifacts created by these oxidants upon analysis of the 131 

volatiles in LVBr by direct immersion (DI)-solid-phase microextraction (SPME) GC-MS are 132 

described. The manuscript reports the results obtained upon analysis of MilliQ water containing 133 

perchlorate by DI-SPME GC-MS and discusses the serious limitations of such carbon-limited 134 

blank analysis.  135 

The compounds observed during DI-SPME GC-MS analysis of LVBr are described in 136 

detail.  The method used here, DI-SPME GC-MS of liquid samples, is different from that used 137 

by SAM (pyrolysis-trap-GC-MS of solid samples).  However, observations made and 138 

conclusions reached based on the reactions of oxychlorines and reduced carbon in our 139 

experiments can be used, in part, to better understand the data produced by SAM at Rocknest 140 

[Glavin et al., 2013; Leshin et al., 2013] and at Yellowknife bay [Freissinet et al., 2015; Ming et 141 

al., 2014]. The manuscript debates the validity of some of the carbon-limited analog experiments 142 

made on Earth in order to test the validity of the interpretation of the data obtained by SAM. 143 

Finally, the manuscript describes an analytical strategy that would increase the chances of 144 

detecting actual Martian organic matter with SAM’s pyrolysis-trap-GC-MS.  145 

 146 

 147 
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2.  Samples and Methods 148 

 149 

 The brine samples analyzed were collected during the 2005-2006 and 2010-2011 150 

expeditions to Lake Vida. The brine sampling strategy is described in Doran et al. [2008] and 151 

Murray et al. [2012]. All samples were poisoned with mercuric chloride and kept refrigerated at 152 

4˚C until analysis. ClO4
- and ClO3

- concentrations were measured separately by sequential ion 153 

chromatography-MS/MS (IC-MS/MS) following the method detailed in Jackson et al. [2010; 154 

2012; 2015]. ClO4
- and ClO3

- were quantified using a Dionex LC 20 ion chromatography system 155 

consisting of GP50 pump, CD25 conductivity detector, AS40 automated sampler and Dionex 156 

IonPac AS16 (250 X 2 mm) analytical column. The IC system was coupled with an Applied 157 

Biosystems – MDS SCIEX API 2000TM triple quadrupole mass spectrometer equipped with a 158 

Turbo-IonSprayTM source. A hydroxide (NaOH) eluent at 0.3 mL·min-1 was followed by 90% 159 

acetonitrile (0.3 mL·min-1) as a post-column solvent. To overcome matrix effects, all samples 160 

were spiked with Cl18O3 (produced in-house at Texas Tech) or Cl18O4 (Dionex) internal 161 

standards. 162 

The methods for solid phase micro extraction [SPME; Pawliszyn, 1999] and GC-MS 163 

were modified from that described in Niki et al. [2004] and Jaraula et al. [2008]. For the LVBr, 164 

a 2 mL aliquot of brine was pipetted into headspace sampling vials, which were previously baked 165 

at 500˚C for 12 hours. While the samples were continuously stirred, after 30 minutes, the liquid 166 

phase was sampled by direct immersion (DI) using a so-called “black” fused silica fiber coated 167 

with 75 μm of Carboxen®/polydimethylsiloxane (PDMS) phase (Supelco) or a “blue” fused silica 168 

fiber coated with 65 μm of PDMS/divinylbenzene (DVB) phase (Supelco). These SPME fibers 169 

were chosen because of their versatility, their comparable selectivity, and importantly because 170 
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they have different organic phase coatings. These differences in composition provide a mean for 171 

easy distinction of the contribution of SPME phases to the volatiles analyzed.    172 

Prior to use, fibers were activated for 30 minutes at 300˚C (black fiber) and 250˚C (blue 173 

fiber) using the split/splitless injector of a Hewlett Packard (HP) 5890 gas chromatograph (GC). 174 

For the DI sampling, the SPME fibers were held for 40 minutes at 40±0.5˚C in the liquid phase 175 

and transferred immediately to the injector of the GC.  176 

The Carboxen® of the black SPME fiber corresponds to Carboxen® 1006, a solid 177 

polymeric, porous, synthetic carbon molecular sieve dominated by sp3 bonds with an even 178 

distribution of micro (7Å), meso, and macro pores [Mani, 1999]. Carbon molecular sieve 179 

polymers are produced by pyrolysis of organic polymers [Jochmann et al., 2014]. The 180 

Carboxen® 1006 and the DVB are embedded into, and partially crosslinked to, the liquid PDMS 181 

polymer. All open solvent bottles were removed from the laboratory at least 16 hours prior to 182 

SPME use in order to prevent contamination of the laboratory atmosphere. 183 

For GC-MS, a HP 6890 GC coupled to a HP-5973 Mass Selective Detector (MSD) was 184 

used in electron ionization mode at 70 eV with helium (Ultra High Purity, He 5.0, 99.999% from  185 

Praxair) as carrier gas in constant flow at 1.1 mL·min-1. The column was a 30 m long HP-5MS 186 

(0.25 mm I.D., 0.25 μm film thickness; (5%-phenyl)-PDMS).  An HP-5MS was selected for its 187 

versatility as it provides good chromatography for both polar and apolar compounds. The range 188 

of the mass scan was m/z 28 to 550 at a rate of three scans per second. Analytes were desorbed 189 

from the SPME fiber for 1 minute into the injector, which was operated in splitless mode at 190 

250˚C for the blue fiber and at 300˚C for the black fiber. These desorption temperatures are the 191 

maximum temperatures of use suggested by Supelco, the manufacturer of these fibers. The oven 192 
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temperature was kept at 35˚C for 2 minutes, then ramped at 1˚C·min-1 to 100˚C and subsequently 193 

ramped at 10˚C·min-1 to 300˚C·min-1 and kept at 300˚C for 30 minutes.   194 

Analytical blanks correspond to the insertion of the blue or black SPME fibers into the 195 

split/splitless injector of the GC-MS directly after activation. A perchlorate reference sample 196 

with a concentration of 40 μg·L-1 of ClO4
- was also prepared by dissolving NaClO4 (Sigma 197 

Aldrich) into MilliQ water.  198 

 199 

3.  Results 200 

 201 

3.1. Oxychlorines 202 

The concentrations of perchlorate (ClO4
-) and chlorate (ClO3

-) in LVBr collected during 203 

the austral summer 2005-2006 are 49 and 11 μg·L-1, respectively. Lake Vida brine, the bottom 204 

waters of the West lobe of Lake Bonney and the chemocline of Lake Fryxell (both Lake Bonney 205 

and Fryxell are in Taylor Valley; McMurdo Dry Valleys) are the only bodies of water of the dry 206 

valleys in which ClO4
- is more abundant than ClO3

- [Jackson et al., 2012]. The concentration of 207 

chlorine in LVBr is 1.16·105 mg·L-1 [Murray et al., 2012].  208 

 209 

3.2 DI-SPME GC-MS  210 

Analytical blanks with both blue and black SPME fibers contained neither HCl nor DCM. 211 

Analytical blanks were devoid of organic compounds other than fragments of the column liquid 212 

phase such as hexamethyl-cyclotrisiloxane and non-cyclic polysiloxanes. Note that these 213 

analytical blanks were obtained after the analysis of LVBr and the analysis of pure water blanks 214 
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with ClO4
-, when the GC column phase and SPME fibers may have already suffered some 215 

damage.  216 

DI-SPME GC-MS of MilliQ water spiked with ClO4
- (40 μg·L-1) produced a significant 217 

amount of CO2 and HCl with both black and blue fibers (Fig. 1). In contrast, DCM was not 218 

detectable when using a blue fiber, while DCM detected when using a black fiber was two orders 219 

of magnitude less than what was detected when analyzing the DOC-rich LVBr. MilliQ water 220 

spiked with ClO4
- yielded small amounts formic and acetic acids with both the black and blue 221 

fibers. Ketones (2-butanone, 2-pentanone), tetrahydrofuran, and ethylacetate were observed only 222 

when using a black fiber (Table 1).  223 

Analysis of the LVBr by DI-SPME GC-MS resulted in a total ion current (TIC) trace 224 

dominated by the CO2, DCM, and dimethylsulfide (DMS; Fig. 2; Fig S1). CO2 was observed in 225 

all brine samples and all blanks with perchlorates analyzed using both black and blue SPME 226 

fibers. Apart from CO2, the compounds detected with both the blue and black fibers can be 227 

divided into five categories on the basis of their chemical composition: i) Cl-bearing, ii) S- and 228 

Se-bearing, iii) O-bearing, iv) saturated hydrocarbons, and v) aromatic compounds, (Fig. 2; 229 

Table 1).  230 

i) Chloride-bearing compounds HCl and DCM were observed in all DI-SPME GC-MS 231 

analyses of LVBr. MeCl and TCM were observed, in low abundances, exclusively during 232 

analysis when using a black SPME fiber (Table 1). When using a blue SPME fiber, the peak area 233 

of HCl, monitored by the mass to charge ratio m/z 36, is 1 to 2 orders of magnitude larger than 234 

when using a black fiber (Fig. 1).  235 

ii) The volatile organic sulfur compounds (VOSCs) identified upon DI-SPME GC-MS 236 

include carbon disulfide (CS2), DMS, dimethylselenide (DMSe), dimethyldisulfide (DMDS), and 237 
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dimethyltrisulfide (DMTS). CS2 was observed in LVBr when using a black SPME fiber (Table 238 

1). DMS, DMSe, and DMDS were observed in all LVBr analysis, independent of the SPME 239 

fiber used (Table 1, Fig. 2, Fig. S2). DMTS was observed only in one of two runs with the black 240 

fiber and in one of two runs with the blue fiber, in both cases in very low abundances. DMS is 241 

always the most abundant VOSC, followed, in decreasing order, by DMDS, DMSe, CS2, and 242 

DMTS (Fig. S2). VOSCs were neither observed in the analytical blanks, nor upon analysis of 243 

MilliQ water with perchlorates. There is no source of sulfur in the SPME GC-MS system used, 244 

and both the analytical blanks and the SPME runs of MilliQ water with ClO4
- did not produce 245 

any VOSCs, suggesting that all VOSCs species must be derived from the brine itself.  246 

iii) O- bearing organic compounds include formic, acetic and propionic acids as well as 247 

ketones (2-propanone, 2-butanone, 2-pentanone, and 4-methylpentane-2-one; the latter being 248 

observed with both black and blue fibers; Table 1, Fig. 2). In contrast, some compounds such as 249 

ethanol, diethylether, ethylacetate and tetrahydrofuran were only observed when a black SPME 250 

fiber was used. The DI-SPME GC-MS of MilliQ water with perchlorate (with both black and 251 

blue SPME fibers) contains formic acid and acetic acid. Propionic acid was only observed in 252 

minute amounts in one of the LVBr analysis with a blue SPME fiber. Some of the ketones (2-253 

propanone and 2-butanone), as well as ethylacetate and tetrahydrofurane, were observed in the 254 

MilliQ water with perchlorate analyzed with a black SPME fiber but were not observed in the 255 

MilliQ water with perchlorates when using a blue SPME fiber.  256 

  iv) C4, C5 and C6 hydrocarbons were identified (Table 1). With the exception of 3-257 

methylpentadecane that was observed when LVBr was analyzed using a blue SPME fiber, all 258 

hydrocarbons were observed when a black fiber was used. Butane and n-pentane are present in 259 

small to trace abundances. C6 hydrocarbons are dominated by n-hexane with 2- and 3-260 
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methylpentane as well as methylcyclopentane (Fig. 2). These hydrocarbons were observed 261 

neither during analysis of MilliQ water with perchlorates nor in analytical blanks.  262 

v) The aromatic compounds benzene and toluene were observed in DI-SPME GC-MS 263 

analysis of LVBr with both black and blue SPME fibers. In contrast, C2-benzenes styrene and 264 

ethylbenzene were observed exclusively when analyzing LVBr with a blue SPME fiber. 265 

Aromatic compounds were absent in the MilliQ water with perchlorate (Table I) and in the 266 

analytical blanks.  267 

 268 

4.  Discussion 269 

 270 

4.1. Oxychlorines 271 

Oxychlorines in the lakes of the MDVs derive from atmospheric deposition on land as 272 

well as glaciers and are transported via ephemeral summer streams to closed basins [Jackson et 273 

al., 2012]. In the MDVs, ClO4
- and ClO3

- concentrations were measured in soils and ice by 274 

Kounaves et al. [2010] and measured in ephemeral streams as well as surficial and deep waters 275 

of perennially ice-covered lakes by Jackson et al. [2012]. Jackson et al. [2012] showed that, in 276 

lakes of the dry valleys, the ClO3
-/ClO4

- ratio is mostly constant with a value of 3.1, and 277 

proposed that values below 3.1 reflect the biodegradation of ClO3
- in anoxic environments. The 278 

ClO3
-/ClO4

- ratio for LVBr is 0.2, suggesting microbial degradation of ClO3
- or abiotic 279 

degradation perhaps similar to that of NO3
- observed experimentally in LVBr by Ostrom et al. [in 280 

revision]. 281 

The ClO4
-/Cl- and ClO3

-/Cl- molar ratios of LVBr (1.5·10-7 and 5.3·10-8, respectively) fall 282 

in the range of values measured for other dry valley lakes (10-7-10-9), all of which have 283 
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experienced significant degradation of ClO4
- and ClO3

-, presumably due to biological reduction 284 

[Jackson et al., 2012]. However, the relative contribution of biological and abiotic reduction of 285 

oxychlorine cannot be resolved as this point.  286 

LVBr is anoxic [Murray et al., 2012] and, as such, could support microbial reduction of 287 

ClO4
- and ClO3

-. The reduction potential of ClO4
-

 

and ClO3
- 
makes them ideal electron acceptors 288 

[Coates and Achenback, 2004] and oxychlorine reducing capacities seem to be widely distributed 289 

among bacteria [Coates et al., 1999]. Thus, one can wonder why ClO4
-

 

and ClO3
- are still so 290 

abundant in the anoxic LVBr. The answer, could be related to electron acceptor competition with 291 

the abundant NO3
- [nearly millimolar; Murray et al., 2012] in LVBr [Farhan and Hatzinger, 292 

2009; London et al., 2011; Ricardo et al., 2012], though some organisms also reduce ClO4
-

 

and 293 ClO3- in the presence of NO3- [Nozawa-Inoue et al., 2005; Van Ginkel et al., 2010; Zuo et al., 294 2009]. In addition, very low microbial metabolic rates imposed by the very low temperature of 295 LVBr (-13.4˚C), with a calculated cell doubling time of 120 years [Murray et al., 2012], would 296 also prevent oxychlorines from being depleted by bacterial reduction even after millennia.  297 Oxychlorines are formed in the atmosphere [Catling et al., 2010; Kounaves et al., 2010], 298 and the presence of these compounds in an encapsulated brine must represent a legacy of a 299 former Lake Vida that received light and external inputs. The history of Lake Vida prior to and 300 during brine formation is not known well enough [Dugan et al., 2015b] to exclude the possibility 301 that the ClO3-/ClO4- ratio was fixed prior to brine encapsulation. This could, for example, occur 302 during periods of lake water column stratification with anoxic bottom waters, as observed in 303 other dry valley lakes such as Lake Fryxell [Taylor Valley; Priscu, 1998]. It is also conceivable 304 that a former Lake Vida with oxygenated waters would also prevent microbial reduction, though 305 the timing of when this system was oxygenated is currently unknown.  306 
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4.2.  CO2, HCl, and Chlorinated Organic Compounds 307 

In our experiments, CO2 is derived from the oxidation of carbon by the oxygen released 308 

from oxychlorines in the 250˚C (blue phase) and 300˚C (black phase) split/splitless injector of 309 

the GC, as is observed in the pyrolysis experiments mimicking SAM and in actual SAM 310 

experiments on Mars [Glavin et al., 2013]. CO2 is present in MilliQ water with ClO4
- when using 311 

both Carboxen®/PDMS and PDMS/DVB SPME phases (Fig. 3). In these experiments, the only 312 

sources of carbon are the coating of SPME fibers and the liquid stationary phase coating of the 313 

capillary column, (5%-phenyl-PDMS; Fig. 3). Thus, the CO2 produced during analysis of LVBr 314 

must be derived from both the oxidation of compounds original to the brine and oxidation of the 315 

organic phases of the SPME GC-MS system. SPME analysis of organic compounds can be 316 

influenced by the presence of Cl- on the SPME fibers, where it competes for adsorption sites 317 

with other compounds. However, the abundance of HCl produced during analysis of MilliQ 318 

water with ClO4
- is equivalent to the amount produced during analysis of LVBr with both the 319 

blue and black SPME fibers (Fig. 1). Thus, the Cl- adsorbed on the SPME fibers during DI of 320 

LVBr does not significantly influence production of HCl during SPME GC-MS. Thus, the 321 

chlorine of HCl is provided mostly by the breakdown of oxychlorines. As helium is used as a 322 

carrier gas, it does not contribute to the hydrogen of HCl. The hydrogen could be derived from 323 

residual water remaining on the SPME fibers after DI, from the organic phases of the SPME 324 

fibers or the chromatographic column, or from organic compounds adsorbed on the fibers when 325 

running a sample of LVBr. There are no significant differences in HCl abundance between LVBr 326 

samples and MilliQ water with ClO4
- run (Fig. 1), suggesting that the organic matter in LVBr is 327 

not necessary to provide enough hydrogen to the system to form the HCl observed. The source of 328 

hydrogen must then be either residual water or the organic phase of the SPME GC-MS system, 329 
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or both. HCl was not observed among the volatiles released upon headspace (HS)-SPME GC-MS 330 

of LVBr when using a black fiber (Fig. S1). In HS-SPME, the fiber is not in direct contact with 331 

the liquid sample, suggesting that residual water on the fiber is the likely source of the hydrogen 332 

of HCl.  333 

DCM is present in all LVBr samples analyzed, independent of the SPME fiber used. In 334 

contrast, when the MilliQ water with ClO4
- is analyzed with a black SPME fiber, DCM is present 335 

in low abundance or absent relative to DCM in the volatiles of LVBr samples when analyzed 336 

with the same fibers. When analyzing MilliQ water with ClO4
-, the reactions associated with the 337 

decomposition of ClO4
- in the GC injector are carbon limited. The sources of carbon, the SPME 338 

fiber coatings and the liquid phase of the capillary column, do not provide enough carbon for 339 

DCM to be abundant or form at all. In contrast, the carbon provided by LVBr allowed ample 340 

formation of DCM.  341 

 342 

4.3. Volatile Sulfur and Selenium Compounds 343 

The legacy of a prior photosynthetic ecosystem is well illustrated in LVBr by the 344 

presence of the VOSCs (CS2, DMS, DMDS, DMTS, and DMSe) in the volatiles evolved from 345 

LVBr upon DI-SPME GC-MS (Fig. 2 and S3; Table 1). DMS is a product of bacterial catabolism 346 

of dimethylsulfoniopropionate [DMSP; Reisch et al., 2011; Stefels and van Boekel, 1993], a 347 

compound produced by photosynthetic algae in marine and lacustrine environments. DMDS and 348 

DMTS sources are directly related to those of DMS. DMSe is a product of microbial catabolism 349 

of selenoproteins produced by algae including diatoms and prymnesiophytes [Araie and 350 

Shiraiwa, 2009], algal phyla that are present in lakes of the dry valleys [Jaraula et al., 2010; 351 

Spaulding et al., 1997].  352 
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Photosynthesis does not presently occur in LVBr [Murray et al., 2012] but must have 353 

occurred in the former Lake Vida when it received light and external inputs, prior to brine 354 

cryoencapsulation. Diatom frustules were detected in lower sediment layers of the Lake Vida ice 355 

core [Dugan et al., 2015b]. The presence of DMS, DMDS, DMTS, and DMSe is well known in 356 

marine environments including sea ice [Levasseur, 2013; Spiese et al., 2009; Turner et al., 357 

1995], but is also observed in both saline and freshwater lakes, including Antarctic lakes [Gibson 358 

et al., 1991; Lee et al., 2004; Roberts and Burton, 1993].  359 

The quantitative assessment of VOSCs by Murray et al. [2012] provided the 360 

concentrations of DMS, MeSH, and dimethylsulfoxide (DMSO; 0.1, 0.2, and 25 μmol·L-1, 361 

respectively). DMSO and dimethylsulfone (DMSO2), common oxidation products of DMS, were 362 

not detected in LVBr by DI-SPME GC-MS. The SPME fibers used here are not appropriate to 363 

collect these relatively high-boiling point, high-polarity compounds [e.g. Camarasu, 2000]. 364 

Thus, the absence of DMSO and DMSO2 from the VOSCs observed suggests that the oxidative 365 

power associated with breakup of oxychlorine in the injector of the GC did not result in 366 

oxidation of VOSCs. It is noteworthy that DMSO2 is present in the liquid/liquid total extract of 367 

the very same samples of LVBr used here. The reasons why the VOSCs did not get oxidized 368 

remain unclear at this point.  369 

MeSH is also a product of microbial catabolism of DMSP via demethylation [Levasseur, 370 

2013]. The absence of MeSH upon SPME analysis must be reconciled with the measurements of 371 

Murray et al. [2012] that show that MeSH (0.2 μmol·L-1) is more abundant than DMS (0.1 372 

μmol·L-1) in LVBr. In a study of artifact formed upon black fiber SPME analysis of VOSCs, 373 

Lestremau et al. [2004] show that mercaptans like MeSH react to form their corresponding 374 

dimers, explaining the presence of DMDS and the non-detection of MeSH in all LVBr analysis. 375 
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A contributing factor to the absence of MeSH is a probable partial loss of this very volatile 376 

compound during transfer of LVBr to SPME vials.  377 

DMSP was not detected with our SPME GC-MS methods though a black fiber was used 378 

previously for quantification of DMSP by SPME GC-MS [Niki et al., 2004]. Hence, the absence 379 

of DMSP cannot be ascribed to an analytical deficiency. DMSP is usually quickly turned into 380 

DMS via enzymatic processes [Stefels et al., 2007]. This degradation most likely occurred prior 381 

to the encapsulation of the brine.  382 

Though the relative abundance of VOSCs observed upon SPME GC-MS may have been 383 

influenced by technique-specific artifacts, all the VOSCs or their source compounds derive from 384 

LVBr.  385 

 386 

4.4. Aromatics 387 

Aromatic compounds identified in the volatiles of LVBr (benzene, toluene, styrene, 388 

ethylbenzene, and phenylsilane) could be evolved from the brine itself but could also be 389 

degradation products of organic polymers involved in the SPME GC-MS system. Benzene and 390 

phenylsilane could be derived directly from the breakdown of the liquid phase of the 5%-phenyl-391 

PDMS capillary column used (Fig. 3). Benzene can also be derived from Carboxen® as it was 392 

observed in SPME GC-MS blank analysis using a black fiber by Lestremau et al. [2004], though 393 

we did not detect benzene in our analytical blanks. Toluene, styrene, and ethylbenzene cannot be 394 

formed directly from the phenyl substituent of 5%-phenyl-PDMS phase as benzene is a 395 

substituent of the silicon atom of siloxane. Styrene and ethylbenzene are not present in the 396 

volatiles of LVBr when analyzed using a black SPME fiber made of Carboxen® and PDMS. In 397 

contrast, styrene and ethylbenzene are present in the volatiles of LVBr analyzed using a blue 398 
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SPME fiber with a phase made of PDMS and DVB (Table 1, Fig. 3). The DVB of the blue 399 

SPME fiber is most likely the source of the toluene and styrene observed, explaining why styrene 400 

and ethylbenzene are not observed in experiments using a black SPME fiber. However, the 401 

presence of a toluene peak in one of the LVBr DI-SPME GC-MS using a black SPME fiber 402 

cannot be explained directly by contribution of GC column and SPME phases involved, unless 403 

Carboxen®, which composition is not well known, can also release toluene. As a result, the 404 

presence of benzene and toluene in LVBr cannot be excluded at this point, but the presence of 405 

styrene and ethylbenzene is related to the DVB of the blue SPME fiber.  406 

Thus, the absence of aromatic compounds upon black and blue fiber DI-SPME GC-MS 407 

of MilliQ water with ClO4
- (Table 1) does not necessarily indicate that these compounds are 408 

derived from LVBr. It is most likely that all aromatics observed, at the exception of benzene and 409 

toluene which may be derived from LVBr, are artifacts derived from the SPME phases. As 410 

indicated above, the low abundance or absence of DCM in the compounds produced upon DI-411 

SPME GC-MS of MilliQ water with ClO4
- suggests that the reactions in the GC injector are 412 

carbon limited. It can be hypothesized that the aromatic compounds released from the SPME 413 

fibers are not observed upon analysis of MilliQ water with ClO4
- because these compounds are 414 

fully oxidized to CO2 by the byproducts of decomposition of oxychlorines.  415 

 416 

4.5. Oxygenates 417 

Representatives of the major species of oxygenates (ketones and acids) observed upon 418 

DI-SPME GC-MS of LVBr were also observed in the DI-SPMDE GC-MS of the MilliQ water 419 

with ClO4
-, though in lesser abundance relative to CO2 and HCl. These lower abundances and 420 

lesser diversity support the carbon-limited reaction hypothesis proposed above to explain the low 421 
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abundance of DCM and absence of aromatic compounds upon DI-SPME GC-MS of MilliQ 422 

water with ClO4
-. It is noteworthy that tetrahydrofuran was observed in the SPME GC-MS blank 423 

analysis using a black fiber by Lestremau et al. [2004], explaining why it is only observed when 424 

using a black SPME fiber. It can then be speculated that only some of the oxygen-bearing 425 

organic compounds formed as a result of carbon limitation. The presence of abundant DOC in 426 

LVBr allowed for the formation of a more diverse array of oxygen-bearing compounds, most if 427 

not all being artifacts formed in the injector of the GC upon decomposition of oxychlorines or 428 

like tetrahydrofuran directly derived from the SPME phase.  429 

  430 

4.6. Hydrocarbons 431 

Determining the origin of hydrocarbons observed during DI-SPME GC-MS of LVBr is 432 

complex. The absence of hydrocarbon from the analytical blank and MilliQ water with ClO4
- 433 

may indicate that these compounds are not directly derived from the organic phases used in the 434 

SPME GC-MS system. It also means that these compounds may not form from the reaction of 435 

the byproducts of oxychlorine degradation with the SPME fiber in the GC injector. However, the 436 

MilliQ blank with ClO4
- is completely depleted in carbon, and therefore, it is likely that any 437 

hydrocarbon derived from the SPME fibers upon reaction with ClO4
- degradation products would 438 

be oxidized to form CO2. As a result, we cannot determine if these hydrocarbons are actually 439 

derived from LVBr or if they are artifacts produced in the injector and are protected (in part) 440 

from degradation by organic compounds provided by LVBr. Last but not least, a possible 441 

contamination by the laboratory atmosphere must be considered. All the C6 hydrocarbons could 442 

be derived from the laboratory hexanes lot, even if chromatographic tests of our lots of hexanes 443 
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show a very different distribution, dominated by cyclohexane and n-hexane, but with neither 2- 444 

nor 3-methylpentanes.  445 

 446 

4.7. Carbon limitation 447 

The low amount of organic carbon (SPME fiber coating and GC column liquid phase) 448 

available for reaction in the GC injector upon DI-SPME GC-MS of MilliQ water with ClO4
- 449 

seems to be a major controlling factor of the distribution of organic compounds in the blank. 450 

This hypothesis is supported by the low abundance or absence of DCM, the absence of aromatic 451 

compounds, and low abundance of oxygenated compounds upon DI-SPME GC-MS of MilliQ 452 

water with ClO4
-. The absence of DCM in the volatiles of MilliQ water with ClO4

- when 453 

analyzed with a blue SPME fiber is not an indication that the DCM observed upon analysis of 454 

LVBr is present in the brine itself. Similarly, the absence of aromatic compounds among the 455 

molecules observed during the DI-SPME GC-MS of MilliQ water with ClO4
- is not an indication 456 

that all aromatic compounds observed upon DI-SPME GC-MS of LVBr are actually derived 457 

from LVBr. The correlation between the distribution of aromatic compounds and the type of 458 

SPME fiber used in our experiments suggests that some of these aromatic compounds 459 

(ethylbenzene and vinylbenzene) are artifacts, produced by the breakdown of the coating of the 460 

SPME fibers. Thus, a carbon-limited blank such as DI-SPME GC-MS of MilliQ water with 461 

ClO4
- does not reflect the diversity of the competing reactions taking place in the injector of the 462 

GC upon decomposition of the ClO4
- in the presence of instrument organic carbon. Furthermore, 463 

it seems that the byproducts of the degradation of SPME fibers, not visible in the MilliQ water 464 

with ClO4
-, are being oxidized to CO2 or DCM.  With our experimental set up, in order to 465 
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observe the variety of artifacts formed in the injector by oxychlorine decomposition, a well-466 

defined source of organic carbon should be added to the MilliQ water with ClO4
-.  467 

Apart from the VOSCs, no compounds unambiguously derived from LVBr were 468 

observed upon SPME GC-MS, suggesting that reactions between oxychlorine decomposition 469 

byproducts and brine compounds were also carbon limited. LVBr has a DOC concentration 48.2 470 

± 9.7 mmol·L−1, largely in excess of the molar abundance of perchlorate and chlorate (0.49 and 471 

0.11 μmol·L−1, respectively), but a vast majority of the DOC in LVBr is not amenable to DI-472 

SPME as Carboxen®/PDMS (black) and PDMS/VDB (blue) fibers were designed for molecules 473 

in the C2-C12 range [Mani, 1999]. Around 50% of the DOC of LVBr is in molecules larger than 1 474 

kDa [Cawley et al., 2016]. Two other fractions of dissolved organic matter (DOM), representing 475 

18% of DOC, have compounds with an average molecular weight of ~500 Da, as determined by 476 

Fourier transform ion cyclotron resonance mass spectrometry [Cawley et al., 2016]. As a result 477 

of the very limited carbon range of the SPME fibers and the large size of the constituents of the 478 

DOM of LVBr, the reduced-carbon to oxychlorine ratio of the material adsorbed on the SPME 479 

fibers after DI sampling must have been much less than in the brine itself, though it cannot be 480 

quantified at this point. The reaction between oxychlorine decomposition byproducts and brine 481 

compounds were carbon limited but not enough to prevent the expression of artifacts such as 482 

aromatic compounds and oxygenates as well as prevent the expression of VOSCs.        483 

 484 

 4.8. Implications for Martian organic matter 485 

The HCl and chlorinated compounds with one carbon atom (MeCl, DCM and TCM) are 486 

byproducts of the heat-induced decomposition of oxychlorines during analysis of LVBr samples 487 

by SPME GC-MS. The same applies for the sediment samples analyzed by SAM at Rocknest 488 
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[Glavin et al., 2013; Leshin et al., 2013] and at Yellowknife Bay [Freissinet et al., 2015; Ming et 489 

al., 2014]. The origin of the chlorine in HCl, MeCl, DCM and TCM is not controversial as all 490 

authors cited above agree that Cl derives mostly, if not all, from oxychlorines. In contrast, the 491 

origin of the carbon in CO2, MeCl, DCM, TCM, and other chlorinated compounds is a more 492 

complex issue. In our DI-SPME GC-MS analysis of MilliQ water with ClO4
-, the only source of 493 

C is the organic phases of the SPME fibers and the capillary column. For blank analyses on 494 

SAM, carbon sources include Tenax TA, an absorbent used to concentrate organic compounds in 495 

a hydrocarbon trap prior to chromatographic analysis, and MTBSTFA, a derivatization agent that 496 

unfortunately leaked from one of its sealed capsules [Glavin et al., 2013; Leshin et al., 2013]. 497 

The small amount of compounds observed in the evolved gas analysis (EGA)-Tenax trap-GC-498 

MS instrument blanks and in Rocknest samples were all associated to these sources of carbon 499 

[Glavin et al., 2013; Leshin et al., 2013]. For example, the aromatic compounds detected by 500 

SAM at Rocknest (benzene, toluene, phenylethyne, chlorobenzene, styrene, and biphenyl) were 501 

among volatiles observed in both instrument blanks and sediment samples [Leshin et al., 2013]. 502 

The source of all these aromatic compounds is the degradation of Tenax TA [Glavin et al., 503 

2013], which is a porous polymer of 2,6-diphenylphenylene oxide (Fig. 3). These compounds 504 

form in the Tenax cryo-trap (kept at -10 ˚C) and/or during heating of the Tenax trap to 300 ˚C for 505 

the release of the trapped compounds to SAM’s GC-MS.  506 

Laboratory analog experiments described by Glavin et al. [2013] and Freissinet et al. 507 

[2015] used MTBSTFA (12.04·10-3 moles of C) and dimethyl-formamide (DMF; 3.87·10-3 moles 508 

of C) mixed with 28 mg of Ca(ClO4)2·nH2O. The amount of carbon in this experiment exceeds 509 

by one order of magnitude the potential amount of O2 (< 2.11·10-4 mol) and Cl2 (< 1.17·10-4 mol) 510 

produced upon decomposition of the hydrated Ca-perchlorate. The identification of large 511 
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amounts of MTBSTFA derived compounds upon GC-MS [Freissinet et al., 2015; Glavin et al., 512 

2013] is not unexpected, as only a small portion of the MTBSTFA carbon was used for synthesis 513 

of CO2 and C1-chlorinated compounds (MeCl, DCM, TCM). Note that for the calculations of 514 

molar abundances of O2 and Cl2, as the hydration level of the Ca-perchlorate used for these 515 

experiments was not provided, we considered the mass of Ca-perchlorate as dry, thus 516 

exaggerating the molar amount of O2 and Cl2 produced upon degradation of the perchlorate 517 

hydrates by 23% if Ca(ClO4)2·4H2O was used. With a 23% decrease in the molar abundance of 518 

O2 and Cl2 produced upon decomposition of Ca(ClO4)2·4H2O, the above experiment is still not 519 

carbon limited.  520 

Another analog experiment was performed using 1 mg of the kerogen-like organic matter 521 

of the Murchinson meteorite with 500 μg of Ca-perchlorate. Again, this experiment was not 522 

carbon limited, with 5.65·10-5 mol of carbon for a potential of <2.00·10-6 mol of Cl2 and 523 

<8.36·10-6 mol of O2. Thus, it is not surprising that compounds expected from the pyrolysis of 524 

the kerogen of the Murchinson meteorite were observed, even if others, such as the more labile 525 

n-alkylthiophenes and n-alkylbenzenes were altered [Freissinet et al., 2015].  526 

In contrast, some of the analog experiments described in Freissinet et al. [2015] were 527 

carbon limited. For example, to test whether the chlorobenzene can be formed from aromatic 528 

species, 0.65·10-9 mol of benzene and 47·10-9 mol of toluene were pyrolyzed separately in a 529 

SAM analog set up with 50 μg of Ca-perchlorate. Upon pyrolysis, the Ca-perchlorate would 530 

produce <8.37·10-7 mol of O2 and <2.09·10-7 mol of Cl2. The benzene and toluene could provide 531 

only 3.90·10-9 and 3.29·10-7 mol of C, respectively, not enough carbon to uptake the O2 and Cl2 532 

produced upon decomposition of the perchlorate. Thus, in absence of enough carbon to address 533 

the amount of O2 and Cl2 released by the Ca-perchlorate decomposition, as observed during our 534 
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analysis of carbon-limited MilliQ water with ClO4
-, it is likely that any organic compounds 535 

produced during EGA or pyrolysis (for analog experiments) and any byproduct of Tenax TA 536 

degradation would be oxidized to CO2 or C1 chlorinated compounds and would not be visible in 537 

the produced chromatograms, or be present in very low abundances. Thus, it is not surprising 538 

that chlorobenzene was “below background level” during GC-MS analysis [Freissinet et al., 539 

2015], for both benzene and toluene experiments. As a result, this analog experiment cannot be 540 

used to determine if the presence of aromatic compounds during analysis on Earth and on Mars 541 

influences the formation of chlorobenzene.  542 

Similarly, on Mars, if the molar abundance of carbon in a sample is less than the molar 543 

abundance of O2 and Cl2 produced upon oxychlorine decomposition, it is likely that most, if not 544 

all, organic compounds derived from the sample will be oxidized during EGA to CO2 or used as 545 

substrate for C1-chlorinated compounds. Additionally, some of the oxidants (O2, Cl2 and HCl) 546 

could be transferred from the EGA to the Tenax trap where they could, upon heating of the trap 547 

to 300˚C, degrade the Tenax and Tenax byproducts.  548 

If the molar abundance of carbon in the sample is higher than the molar abundance of O2 549 

and Cl2 available in the EGA, some of the organic compounds present may be preserved but 550 

organic artifacts produced in the analytical system (notably the Tenax trap) will also have a 551 

better chance to survive the effects of perchlorate decomposition, as we observed during our 552 

analysis of LVBr. Thus, it can be speculated that the increased abundance of these chlorinated 553 

compounds during analysis of the Sheepbed mudstone samples CB-3, CB-5, and CB-6 may be 554 

the result of an increase in the availability of Martian reduced carbon in the analyzed samples, 555 

allowing the expression of organic compounds otherwise oxidized to CO2 or C1-chlorides by the 556 

oxidants (O2 and Cl2) released upon perchlorate decomposition.  557 
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To increase the chances to have Martian organic matter expressed during EGA-trap-GC-MS, an 558 

additional source of reduced carbon could be added to the analyzed samples. On SAM, the only 559 

available additional sources of carbon are derivatization agents MTBSTFA and DMF stored in 7 560 

cups of the sample manipulation system. Though, at least one of these cups leaked [Glavin et al., 561 

2013], each non-leaking derivatization cup contains 1.7 mmol of MTBSTFA and 1.3 mmol of 562 

DMF, which corresponds to 19.2 mmol of carbon. The abundance of perchlorates in Mars 563 

samples analyzed by SAM was estimated using the amount of O2 released during EGA [from 0.1 564 

to ~ 2 weight % ClO4
-; Stern et al., 2015; see also Ming et al., 2014]. For a maximum sample 565 

size (triple load) of ~166 mg of sediment [Freissinet et al., 2015], 2 wt. % of ClO4
- would 566 

provide 6.70·10-2 mmol of O2 and 1.67·10-2 mmol of Cl2, much less than the moles of carbon 567 

provided by MTBSTFA and DMF. In such a case, the O2 and Cl2 released upon decomposition 568 

of the perchlorates would oxidize part of the available Martian reduced carbon and part of the 569 

MTBSTFA and DMF, allowing some Martian organic matter to be preserved and analyzed by 570 

GC-MS.  571 

 572 

 5.  Conclusions 573 

The cryo-encapsulated, aphotic, anoxic LVBr contains a significant amount of 574 

perchlorate (49 μg·L-1) and chlorate (11 μg·L-1). The persistence of these oxychlorines in the 575 

anoxic brine is probably the result of the extremely low metabolic rates of the LVBr bacterial 576 

community and the inhibition of oxychlorine reduction by the presence of abundant nitrate.  577 

Analysis of volatiles from the LVBr by DI-SPME GC-MS using two different SPME 578 

fibers showed that VOSCs are derived from LVBr and do not seem to be affected by 579 

oxychlorines upon analysis. These VOSCs are derived from bacterial catabolism of DMSP a 580 
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products of photosynthesis and, like oxychlorines that are products of atmospheric 581 

photochemistry, are legacies from a former Lake Vida that received light and external inputs.  582 

LVBr is a good Mars analog for brine that may have been preserved under ice or deep in 583 

lacustrine sediments. The presence of oxychlorines in LVBr also suggests that perchlorates could 584 

be pervasive in any evaporative brine and lake sediments on Mars.  585 

The analysis by DI-SPME GC-MS of MilliQ water with ClO4
- did not produce any 586 

organic compounds other than DCM and oxygen bearing compounds, and produced much less of 587 

those than during LVBr analysis, suggesting carbon limitation of the experimental system. The 588 

composition of aromatic compounds observed upon analysis of LVBr is in part dependent on the 589 

type of SPME fiber used during analysis, suggesting that some of these aromatic compounds 590 

may be artifacts. The absence of aromatic compounds in the volatiles evolved upon analysis of 591 

carbon-limited MilliQ water with ClO4
- indicates that these compounds must have been oxidized 592 

to CO2 or used to make C1-chlorinated compounds upon decomposition of the oxychlorines in 593 

the injector of the GC. Thus, carbon-limited perchlorate blanks may not provide any information 594 

on the potential formation of artifacts associated with oxychlorine decomposition. Our 595 

experiments with LVBr suggest that these artifacts are observed only if enough carbon is 596 

available during decomposition of the oxychlorines, preventing their full oxidation to CO2 or C1-597 

chlorides. 598 

Analysis of results obtained on SAM analog experimental systems and obtained by SAM 599 

on Mars suggests that carbon limitation has not been considered an important factor and that 600 

some of the conclusions drawn on the basis of analog experiments may need to be reconsidered. 601 

The appearance of high abundances of chlorobenzene as well as C2, C3 and C4 dichloroalkanes in 602 

Sheepbed mudstone samples CB-3, CB-5 and CB-6 relative to other samples analyzed and 603 
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relative to analytical blanks may reflect an increase in reduced-carbon/perchlorate ratio of these 604 

samples relative to other Martian samples analyzed. A high reduced-carbon/perchlorate ratio 605 

may prevent full oxidation of Martian reduced carbon. We propose that the addition of the 606 

derivatization agents MTBSTFA and DMF to Martian sediment samples would provide enough 607 

reduced carbon to prevent full oxidation of the organic matter in a Martian sample during 608 

pyrolysis, perhaps allowing the detection of Martian organic compounds by GC-MS.  609 

  610 
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Table 1. Organic and inorganic compounds occurrence observed upon DI-SPME GC-MS 783 

duplicate analyses of Lake Vida brine (LVBr 1 and 2) and analysis of MilliQ water with 784 

40 µg ClO4
-·L-1.  785 

  
Compounds 

Black Fiber DI-SPME   Blue Fiber DI-SPME 

 
LVBr LVBr MilliQ   LVBr LVBr MilliQ 

 
 1 2  with ClO4

-    1   2  with ClO4
- 

  Carbon dioxide x1 x x 
 

x x x 

C
l 

HCl x x x 
 

x x x 
Chloromethane tr2 tr 

     Dichloromethane x x x 
 

x x 
 Trichloromethane x     

 
      

S 
an

d 
Se

 Dimethylsulfide x x   
 

x x   
Dimethylselenide x x 

  
x tr 

 Dimethyldisulfide x x 
  

x x 
 Dimethyltrisulfide 

 
x 

  
x 

  Carbon disulfide x x 
     

H
yd

ro
ca

rb
on

 Butene x tr   
 

      
Pentane tr 

      2-methylpentane x 
      3-methylpentane x 
    

x 
 n-Hexane x x 

     Methylcyclopentane x 
      

A
ro

m
at

ic
 Benzene x x   

 
x x   

Toluene x 
   

x x 
 Styrene 

    
x 

  Ethylbenzene       
 

  x   

O
xy

ge
n 

Formic acid   x x 
 

tr x x 
Acetic acid x x x 

 
x x x 

Propionic acid 
     

x 
 Ethanol x x 

     Diethylether x 
      2-propanone x x x 

    2-butanone x x x 
 

x 
  2-pentanone x x 

     4-methyl-penta-2-one x x 
  

x x 
 Ethylacetate x x x 

    Tetrahydrofuran x   x 
 

      

Si
 Phenylsilane x x 

  
x 

  Hexamethylcyclotrisiloxane x x x 
 

x x x 
Octamethylcyclotetrasiloxane x x    

 
x     

1 x indicates compounds with unambiguous mass spectrum  786 
2 tr indicates compounds in low abundance  787 
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 788 

 789 

Figure 1. Peak area of CO2 (black), HCl (white), and dichloromethane (DCM, grey) in the mass 790 

chromatogram of their most abundant fragment ion, m/z 44, m/z 36, and m/z 84, respectively, 791 

upon duplicate analysis of Lake Vida brine (LVBr) and MilliQ water with 40 µg·L-1 of 792 

perchlorate (MilliQ-ClO4
-) in DI-SPME GC-MS, using a black and a blue SPME fiber.   793 
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 794 

 795 

Figure 2. Log plot of the total ion current (TIC) trace obtained upon DI-SPME GC-MS with a 796 

black SPME fiber of Lake Vida brine. To show on the same plot the most and the least abundant 797 

peaks, the signal intensity is plotted on a log scale. To better observe the dense distribution of 798 

peaks between 1.5 and 3 minutes, the retention time was also plotted on a log scale. The 799 

corresponding non-log TIC trace is shown in Fig. S1.   800 
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 801 

 802 

 803 

Figure 3. a) Structure of polydimethylsiloxane (PDMS); b) Structure of (5%-phenyl)-PDMS 804 

used as a liquid phase in the capillary colum. c) Isomers of divinylbenzene in blue SPME fibers. 805 

d) Structure of Tenax TA used on SAM.   806 
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 807 

 808 

Figure 4. Summed mass chromatogram m/z 78 + m/z 91 + m/z 92 + m/z 103 + m/z 104 + m/z 105 809 

+ m/z 106 showing the distribution of benzene (m/z 78), toluene (m/z 91 + m/z 92), ethylbenzene 810 

(m/z 105 + m/z 106) , and styrene (m/z 103 + m/z 104) in the volatiles observed upon DI-SPME 811 

GC-MS of LVBr when using a) a black SPME fiber and b) a blue SPME fiber. Note that 812 

ethylbenzene was not detected in this run of LVBr using a blue fiber.  813 


