An Update to a Conformal Ablative Thermal Protection System for Planetary and Human Exploration Missions

R. Beck, J. Arnold, M. Gasch, M. Stackpoole, E. Venkatapathy

NASA Ames Research Center

11th International Planetary Probe Workshop, Pasadena California, 16th-20th June 2014

CONTEX & OBJECTIVE

Nasa Stmd Game Changing Development Program

What is our Mission?

To focus on transformative space technologies that will lead to advances in space and terrestrial capabilities

Goals

• Develop Game Changing technologies that produce dramatic impacts for NASA’s Space Exploration and Science Missions
• Capitalize on opportunities to leverage funding and cost-share from external organizations in technology areas mutually benefiting NASA and the other organizations
• Formulate and implement technology projects that deliver the required performance to stakeholders on schedule and within cost
• Deliver technology knowledge that is used internally for NASA missions as well as externally throughout the aerospace community

Vision

• Focus of the spacecraft design community has been on “heritage” ablative materials for TPS
• Lessons learned during recent builds:
 - Rigid-lightweight TPS heritage alternatives (PICA and AVCOAT) have been having significant integration issues
 - Low strain-to-failure of PICA makes direct bonding problematic and requires small link sizes and gap fillers for large heatshield panels
 - High touch labor requirements for AVCOAT results in large costs and long schedules, high CTE limits choice of structure materials
• Work was initiated under ETTO and ARMID and continued under STMD/GCDP to develop improved TPS to solve these issues

The Vision is to develop and deliver a high strain-to-failure conformal TPS to TRL 5-6 capable of reducing the cost and complexity of protecting an flight aeroshell

Why Conformal?

• 125% of the weight of conventional TPS
• Improved heat shield design
• Decreased cost of launch

CA-TPS Key Performance Parameters

<table>
<thead>
<tr>
<th>Conformal Ablator Key Performance Parameters</th>
<th>Category</th>
<th>Definition</th>
<th>State-of-the-Art Values</th>
<th>TRL 5 Threshold Goal</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>KPP-C1</td>
<td></td>
<td></td>
<td></td>
<td>200°C/500°C</td>
<td></td>
</tr>
<tr>
<td>KPP-C2</td>
<td></td>
<td></td>
<td></td>
<td>300°C/650°C</td>
<td></td>
</tr>
<tr>
<td>KPP-C3</td>
<td></td>
<td></td>
<td></td>
<td>350°C/750°C</td>
<td></td>
</tr>
<tr>
<td>KPP-C4</td>
<td></td>
<td></td>
<td></td>
<td>400°C/800°C</td>
<td></td>
</tr>
</tbody>
</table>

CA-TPS Schedule

Continued Systems Engineering Approach to Material Development

Technical Requirements Definition

• Stakeholder expectations understood to understand the technical problem and establish the design boundary

Continuous Risk Management (CRM)

• CRM utilized to provide systematic method for identifying, analyzing, tracking, and communicating risks on a continuous basis
• Embed risk management into normal day-to-day activities to identify and manage risks
• Delegate risk management responsibility to lowest possible organization to mitigate or accept risk
• Delegate Risk Management Officer to lead risk management

Testing, Results & Modeling

Testing, Results, and Modeling

Conformal TPS Manufacturing Scale-Up

• Vendor is required to supply for 1-m or larger MDU
 - Small-scale samples for mat props and SPRITE following by large-scale materials for application to the MDU
 - Manufacturing Plan for C-PICA at least 1.5-m wide
 - Non-destructive methodologies necessary to examine variations in the fuel structure and the resulting conformal ablator and for bond verification
 - Design support and manufacture of a large manufacturing demonstration unit (MDU)

Small Probe Vendor

• Technology transfer TPS manufacturing to Small Probe Provider Terminal Velocity Aerospace (TPA) and provide flight test article
• Performed a successfully demonstration Conformal PICA and Conformal TPS over the technology development phase
• Developed a successful TPS design for a future Small Probe Provider Terminal Velocity
• Developed and delivered flight test article (ETTO- EDR) for ground testing
• Includes
 - Plant and test activities
 - Pre-flight activities
 - Post-flight analysis and testing

Establish Industry Partnerships

Poc: Robin Beck robin.a.beck@nasa.gov

CONCLUSION & OUTLOOK

Game Changing: we have created a high strain-to-failure TPS with a dramatic reduction in complexity and should result in lower cost heatshield manufacturing