Components to Assembly: Role of Model Based Physics-of-Failure (PoF) Reliability Assessment

Bhanu Sood, Anthony Diventi
Reliability and Risk Assessment Branch
Reliability – a PoF Perspective

Reliability statisticians are interested in:
- Tracking system level failure data during the service life for logistical purposes.
- Determining the hazard rate curves.

PoF reliability engineers are interested in:
- Understanding the individual failures.
- Controlling the causes.

This is done by:
1. Assessment of influence of hardware configuration.
2. Systematic and detailed study of life-cycle stresses on root-cause failure mechanisms.
3. Influence of materials at potential failure sites.
PoF Fundamentals: Terminology

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failure</td>
<td>product no longer performs the intended function</td>
</tr>
<tr>
<td>Failure Mode</td>
<td>the effect by which a failure is observed</td>
</tr>
<tr>
<td>Failure Mechanism</td>
<td>physical, chemical, thermodynamic or other process that results in failure</td>
</tr>
<tr>
<td>Failure Site</td>
<td>location of the failure site</td>
</tr>
<tr>
<td>Fault/Defect</td>
<td>weakness (e.g., crack or void) that can locally accelerate damage accumulation and failure</td>
</tr>
<tr>
<td>Load</td>
<td>application/environmental condition (electrical, thermal, mechanical, chemical...) that can precipitate a failure mechanism</td>
</tr>
<tr>
<td>Stress</td>
<td>intensity of the applied load at a failure site</td>
</tr>
</tbody>
</table>
Failure Mechanisms in Printed Wiring Assemblies

Sites
- PCB
- Circuitry
- Soldered Attaches
- Solderless Attaches

Failures

PCB
- CFF
- Fiber Resin Debonding
- Dendritic Growth
- Intermetallic Formation
- Tg Limitation
- Delamination
- Laminate Plasticization
- Trace Fracture
- PTH Barrel Fatigue

Circuitry
- Trace Corrosion
- Lead Pad Corrosion
- Connector Corrosion
- J-lead
 - Low cycle fatigue
 - High cycle fatigue
 - Shock fracture
- Gullwing
 - Low cycle fatigue
 - High cycle fatigue
 - Shock fracture
- LCC
 - Low cycle fatigue
 - High cycle fatigue
 - Shock fracture
- Insertion-mount
 - Pullout
 - Lead fatigue
 - High cycle fatigue
 - Shock fracture
- BGA, CSP
 - Low cycle fatigue
 - High cycle fatigue
- COB, flip-chip
 - Low cycle fatigue
 - High cycle fatigue

Soldered Attaches
- Pressure contact
- Pin in socket
- Pin fretting

Solderless Attaches
- Edge Card
- Finger fretting
- Pressure contact
- Spring Relaxation

EMI
- Susceptibility
- Generation
- Crosstalk
- Excessive Delay Time
- DC Drop
- dI Noise

SAFETY and MISSION ASSURANCE DIRECTORATE Code 300
Virtual Qualification: A Method to Apply PoF in Electronic Design

• VQ is a simulation-based methodology that assesses whether a system can meet defined life cycle requirements based on its materials, geometry, and operating characteristics.

• Virtual qualification is based on physics-of-failure (PoF) principles and focuses on the dominant wear-out mechanisms in electronic products
 – Focus on interconnect materials such as solder joints.
 – Printed circuit board features such as plated through-holes (PTH).
Steps in Virtual Qualification

- Design Capture
- Failure Risk Assessment
- Life-Cycle Loads
- Load Transformation
- Failure Quantification
- Ranking of Potential Failure Sites and Mechanisms

Physical Verification: Test Setup, Specimen Characterization, Accelerated Stress Test
Virtual Qualification Software

- Interface to CAD
- Design Capture
- Assessment Management
- Life Cycle Characterization
- Stress Assessment
- Life Expectancy and Failure Assessment
Case Study: Virtual Qualification of Radio Control Module

RT 1556 Control Module
- Consists of 3 CCA’s with 6 layer PWB’s
- Ceramic and plastic microcircuits
- SMT and PTH technology
- Commercial and military components
- Approx. Cost $5k/module

CCAs
Approximately 4.5x4.5”
40 mils thick
laminated BT
backed with 25 mil Al Plate

Components
- 50 microcircuits
- 7 connectors
- 22 inductors
- 44 semiconductors
- 241 capacitors
- 222 resistors
Life Cycle Loading Conditions

Life Expectancy: 20 years

• Power-On Time = 10,080 hours
 30 flight hours per month, ratio on time vs flight time
 = 1.4
• Thermal Cycles = 7,200 cycles
 one cycle per flight hour, 30 flights per month
• Vibration Cycles = 3.6×10^6 to 70.8×10^6 cycles
 Maximum PSD $0.04G^2/Hz$
 100-1000 Hz (Absolute worst case, 10% of flight hours ~ 10^9 cycles)
Thermal Analysis

Thermal simulation of the circuit card was performed to obtain operating temperatures and temperature gradients between board and components.

Component Data
- Component interconnect geometry and material
- Component standoff height
- Thermal vias
- Thermal paste

Board Data
- Material composition of board layers
- Thermal conductivity of board material
Board and component temperatures are used to confirm that parts will operate below temperature limit and in developing a life cycle loading scenario. Simulation indicated an 8°C rise above ambient during operation which was confirmed in test.
Vibration simulation of the circuit card was performed to obtain the natural frequency and board response to the anticipated loading condition.
Vibration Analysis – Results

- Natural Frequency > 500 Hz
- Maximum curvature at board center
The failure assessment of the life cycling loading scenario and database indicates that the module will not meet its 20 year design requirement. The life is equivalent to 3800 thermal cycles.

<table>
<thead>
<tr>
<th>Site</th>
<th>#Eval</th>
<th>Prime Failure Model</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>U14</td>
<td>2</td>
<td>1ST_TF_LL</td>
<td>10.65 years (DR:1.88)</td>
</tr>
<tr>
<td>U13</td>
<td>2</td>
<td>1ST_TF_LL</td>
<td>10.88 years (DR:1.84)</td>
</tr>
<tr>
<td>U9</td>
<td>2</td>
<td>1ST_TF_LL</td>
<td>10.98 years (DR:1.82)</td>
</tr>
<tr>
<td>U8</td>
<td>2</td>
<td>1ST_TF_LL</td>
<td>11.29 years (DR:1.77)</td>
</tr>
<tr>
<td>U3</td>
<td>2</td>
<td>1ST_TF_LL</td>
<td>11.79 years (DR:1.70)</td>
</tr>
<tr>
<td>U11</td>
<td>2</td>
<td>1ST_TF_LL</td>
<td>12.06 years (DR:1.66)</td>
</tr>
<tr>
<td>U2</td>
<td>2</td>
<td>1ST_TF_LL</td>
<td>12.32 years (DR:1.62)</td>
</tr>
<tr>
<td>U1</td>
<td>2</td>
<td>1ST_TF_LL</td>
<td>13.05 years (DR:1.53)</td>
</tr>
<tr>
<td>C68</td>
<td>2</td>
<td>1ST_TF_LL</td>
<td>> 30 years (DR:0.39)</td>
</tr>
<tr>
<td>C69</td>
<td>2</td>
<td>1ST_TF_LL</td>
<td>> 30 years (DR:0.39)</td>
</tr>
</tbody>
</table>
Virtual Testing

Using the simulation model, a physical test was developed to precipitate failures.

Test conditions:
Temperature cycling: -50 to 95°C, dwell, 2 hours per cycle
Vibration: 0.04 G²/Hz, 6.10 Grms, 10 hours

Simulation Results
Test would require approximately 63 days or 750 thermal cycles.
Testing Results

Test conditions:
Temperature cycling: -50 to 95°C, dwell, 2 hours per cycle.

Vibration: 0.04 G²/Hz, 6.10 Grms, 10 hours
Summary of Radio Module VQ

Virtual Qualification Results:
- Identified 20 pin Leadless Chip Carrier (LCC) as a weak link in the CCA design
- Estimated time-to-failure during accelerated life test cycle
- Estimated life under operating conditions - 6.5 years

- Changed design to remove the 20 pin LCC
- Improved reliability of modules - 5,000 units fielded - 20 years field life
- Avoided potential cost of $27M in operation and sustainment.
Case Study: SpaceCube Processor Card

- Identified candidate PCBA
- Life cycle stress profiles
- Computer model of the PCBA
- PCB inspection data, design inputs - corresponding “safe” characteristics
Overview of the SpaceCube Processor Card

Populated Board

Expected stress conditions:
- -7°C to 48°C
- Limits set at -30°C to +55°C
- 14.1 GRMS

BOM:
- CGA package 1752 pin, 1mm pitch, 20mil diameter, 90/10 solder with eutectic
- MLCCs, SMD resistors, diodes, connectors, actives and power MOSFETs
The difference in the “z” coefficient of thermal expansion (CTE) of the copper plating and the resin system in the PWBs is usually greater than a factor of 10. Higher reflow temperature will induce greater damage on large aspect ratio PTHs.
PTH Low-Cycle Fatigue in PWBs

PWB-CTE in thickness (z) direction: ~50-90 E-6 /°C and Cu-CTE in plating: ~20 E-6 /°C

Thermal excursions cause thermal expansion mismatch in the thickness direction
<table>
<thead>
<tr>
<th>Feature</th>
<th>Variant</th>
<th>Effect on PTH Stress</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Location</td>
<td>Spacing between PTHs</td>
<td>More closely spaced PTHs associated with a reduction in stresses</td>
<td>Out of plane constraints reduced and more readily shared between adjacent PTHs.</td>
</tr>
<tr>
<td>Barrel</td>
<td>Stress variation with respect to midplane</td>
<td>Stress increases closer to mid plane; maximum barrel stress at mid plane.</td>
<td>Results of thermally induced stress analysis.</td>
</tr>
</tbody>
</table>
| Innerplanes | Polyamide boards | • Local stress concentration at innerplane (could exceed midplane stress depending on location wrt midplane)
 | • Overall reduction (10%) in barrel stress outside concentrations (vs no innerplanes) | In plane CTE between Cu and Polyamide have a larger delta than FR-4 and Cu | | |
| Aspect Ratio | MLB Thickness/Hole Diameter | High aspect ratio associated with high stresses. | 0.030” boards are most robust according to IPC TR-579; 0.090” boards are less robust all other dimensions being equal. |
| Plating | Thickness | 2 mils variation (1-3 mils thickness) can change stress levels by 25% | More metal, less stress |
| Solder Filling PTHs | Solder Filled | Reduction in overall barrel stress 3%-9% | More metal (solder); small effect due to properties of solder |
Summary

• Multifaceted PoF tools are being used in the SmartCube development process:
 – Adoption of PoF approaches allows the team to understand the product degradation processes and account for degradation during the design.

• Simulation based failure assessment is ongoing, stresses include
 – thermal analysis
 – vibration analysis
 – virtual failure assessment

• Algorithms are based on PoF knowledge assembled through the review of published literature and on the basis of research conducted at the University of Maryland.
Acknowledgements:

- John Evans/OSMA for supporting PoF Based VQ Efforts.
- Milt Davis, Chuck Clagett/GSFC Code 596 for PCBA assessment hardware support.
- Dave Petrick/GSFC Code 587 for general support with SmartCube assessment.

Bhanu Sood
Quality and Reliability Division
NASA Goddard Space Flight Center
Phone: (301) 286-5584
bhanu.sood@nasa.gov