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Abstract. Light diffraction from ultrasound, which can be used to investigate nonlinear 

acoustic phenomena in liquids, is reported for wave amplitudes larger than that typically 

reported in the literature. Large amplitude waves result in waveform distortion due to the 

nonlinearity of the medium that generates harmonics and produces asymmetries in the light 

diffraction pattern. For standing waves with amplitudes above a threshold value, 

subharmonics are generated in addition to the harmonics and produce additional diffraction 

orders of the incident light. With increasing drive amplitude above the threshold a cascade 

of period-doubling subharmonics are generated, terminating in a region characterized by a 

random, incoherent (chaotic) diffraction pattern. To explain the experimental results a toy 

model is introduced, which is derived from traveling wave solutions of the nonlinear wave 

equation corresponding to the fundamental and second harmonic standing waves. The toy 

model reduces the nonlinear partial differential equation to a mathematically more tractable 

nonlinear ordinary differential equation. The model predicts the experimentally observed 

cascade of period-doubling subharmonics terminating in chaos that occurs with increasing 

drive amplitudes above the threshold value. The calculated threshold amplitude is 

consistent with the value estimated from the experimental data.  

 

INTRODUCTION.  In 1932, Debye and Sears [1] in the USA and Lucas and Biquard [2] 

in France independently observed that when a monochromatic light beam propagates 

perpendicularly through an ultrasonic beam, the light will diffract into several orders.  A 

theoretical model, developed by Raman and Nath [3] (the Raman-Nath theory), shows that 

the ultrasonic wave behaves like a diffraction grating for the light. Starting with the 

electromagnetic wave equation and introducing a variable refractive index µ for the light 

due to ultrasonic pressure variations, they predicted the intensity of each order as well as 

the positions of the orders. The intensity In of the diffracted light in the nth order is given 

as 

           In=Jn2()     (1) 
   
where Jn is the nth order Bessel function and v is the Raman-Nath parameter given as  

 

        =2πµa/ λ         (2) 
 

 
where a is the width of the sound field and λ is the wavelength of the light.  The angle Θ of 

the diffracted light is obtained as [3] 

 

                                      sin(Θ)=  nλ/λ*               (3) 

 



where λ* is the wavelength of the sound. The Raman-Nath theory is in good agreement with 

the experimental results for infinitesimal amplitude ultrasonic waves, since the intensity of 

the orders for such case is proportional to the square of Bessel functions.  

  Zankel and Hiedemann [4] observed that finite (large) amplitude ultrasonic waves 

produce an asymmetry in the diffraction pattern resulting from the nonlinearity of the 

propagation medium, which progressively distorts the ultrasonic sinusoidal waveform 

along the propagation path. The asymmetry in the first orders (the difference in the negative 

and positive order) of the measured light intensity increases with the fundamental wave 

pressure. The asymmetry in the diffraction pattern also increases with an increase in the 

wave propagation distance as illustrated in Fig.1.  
 

 
Figure 1. Light diffraction by ultrasonic waves in water with frequency of 1.76 MHz at 3, 20 and 

at 36 cm. (Reproduced with permission from M.A. Breazeale, J. Acoust. Soc. Am. 33, 857 

(1961). Copyright, Acoustical Society of America) 

 

The asymmetry in the light diffraction orders due to the generated acoustic second 

harmonics allowed a determination of the nonlinearity parameter B/A for water and m-

Xylene by Adler and Hiedemann [6].  It was later observed that above a threshold 

 

                                               
Figure 2. Schematic diagram of the diffraction pattern below the threshold (top pattern) and 

above threshold (bottom pattern). 

 

acoustic drive amplitude subharmonics are generated, leading to diffraction orders in 

addition to the orders from the integer harmonics [7,8]. The additional diffraction orders 

generated above the acoustic threshold amplitude are shown in the bottom diffraction 

pattern of Fig.2.  In the present paper a toy model is introduced to quantify the threshold 

acoustic drive amplitude necessary to generate in a liquid-filled resonant cavity a cascade 



of period-doubling subharmonics that, with increasing drive amplitude, terminates in 

chaos. Theoretical predictions from the model are compared to experiment.   

 

ACOUSTIC HARMONIC GENERATION UNDER RESONANT CONDITIONS. 

Consider acoustic wave propagation in a dissipative medium having quadratic nonlinearity. 

The equation governing longitudinal wave propagation along the spatial direction x can be 

approximated in Lagrangian coordinates as [9] 
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where u is the particle displacement, t is time, c is the acoustic phase velocity, a is the 

damping coefficient, and  = (B/A) + 2 is the nonlinearity parameter for liquids, where A 

and B are the Beyer coefficients.  The solution of Eq.(4) to second harmonic terms 

(neglecting the static term), assuming a driving source u(0,t) = 0 cos(t), is given as [9] 

 

  𝑢 = 𝜂0 𝑒
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where k = /c, 1  2/2c3 is the fundamental wave attenuation coefficient, and 2 is the 

second harmonic attenuation coefficient related to 1 by the constant Rr = 2 1. 

Now consider a fluid-filled cavity formed between parallel surfaces of a flat 

transducer and a flat reflector. The ‘propagating wave’ model [10] is used to assess the 

effects of continuous waves reflecting normally between parallel surfaces of a resonant 

cavity [11].  For continuous waves bounded by reflecting surfaces at x = 0 and x = L/2 the 

amplitude at a point x  [0, L/2] consists of the sum of all contributions resulting from 

waves which had been generated at the point x = 0 and have propagated to the point x.  The 

fundamental wave resonant amplitude (1)res is obtained as [11]  

 

                                               (𝜂1)𝑟𝑒𝑠 = |𝑅𝑒[𝐴̅1(𝑥, 𝑡)]| ≈
𝜂0

𝛼1𝐿
  .   (6) 

 

The second harmonic resonant amplitude (2)res is obtained as [11] 
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TOY MODEL FOR ASSESSING SUBHARMONIC GENERATION AND CHAOS.  

The linear wave equation 𝜕2𝑢 𝜕𝑡2⁄ − 𝑐2 𝜕2𝑢 𝜕𝑥2⁄ = 0 is a partial differential equation 

(PDE) that, for unforced resonant conditions at a point x  [0, L/2], can be reduced to the 

linear ordinary differential equation (ODE) 𝑑2𝜂 𝑑𝑡2⁄ +⁡𝜔0
2𝜂 = 0, where 0 = 2c/L, by 

substituting 𝑢(𝑥, 𝑡) = ⁡𝜂(𝑡) cos 𝑘𝑥 in the wave equation.  The solution to the ODE governs 

the resonant amplitude for any x  [0, L/2].  The differential equation obtained by 

eliminating the dependence on at least one independent variable in the PDE is an example 

of a toy model.  Consider the equation 
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where  = c1.  It is assumed that Eq.(8) will adequately serve as a toy model for possible 

subharmonic solutions of  Eq.(4), providing that Eq.(8) correctly predicts the fundamental 

and second harmonic resonant amplitudes given by Eqs.(6) and (7), respectively.  A 

perturbation solution to Eq.(8) has been shown to yield the appropriate amplitudes [11].  

In nonlinear systems with oscillatory drive forces the generation of higher 

harmonics of order n = 2, 3,  serves to stimulate and sustain the generation of 

subharmonics of fractional order 1/n [12].  For an acoustic resonant system subharmonic 

generation occurs when the amplitude of excitation attains a threshold value dependent on 

the acoustic drive frequency and attenuation in the medium.  The driving term 

(20/2)cos(t) in Eq.(8) allows the possibility of stable subharmonic generation leading 

to chaos.  An assessment of this possibility can be obtained by testing for homoclinic 

bifurcation (subharmonic generation) using the Melnikov method [12].   

The Melnikov method establishes conditions under which subharmonic generation 

leading to chaos is assured.  Central to the method is the Melnikov function M(t0) [12], 

which for Eq.(8) is [11] 
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The vanishing of M(t0) marks the beginning of an unstable region in phase space 

that includes both subharmonic generation and chaos.  For given values of the attenuation 

coefficient 1 and drive frequency  the drive amplitude threshold (0)th necessary for 

M(t0) = 0 is obtained for a value of t0 such that cos(t0) = 1 in Eq.(10).  Thus, from Eq.(10) 

the threshold drive amplitude necessary to initiate a cascade of period-doubling 

subharmonics that with increasing drive amplitude terminates in chaos is 
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EXPERIMENTS AND CONCLUSION.  The predictions of Eq.(11) are compared to 

measurements obtained for a water-filled resonant cavity [13].  For water c  1.54 x 103 m 

s-1,   6.8, and Rr  4.  In the present experiments  = 0 = 31.4 MHz, 1  0.127 m-1, 

and L = 0.06 m.  The threshold displacement drive amplitude (0)th necessary for 

subharmonic generation is calculated by substituting these values in Eq.(11) to obtain (0)th 

 1.910-12 m.  This drive amplitude results in the fundamental resonant amplitude (1)res 

 0.2 nm as calculated from Eq.(6).  The resonant amplitude corresponding to subharmonic 

generation is estimated in the present experiments to be roughly 0.3 nm.  The calculated 



value (1)res  0.2 nm is consistent with the experimental value.  As the acoustic drive 

amplitude is further increased, the subharmonic pattern transitions via a cascade of period-

doublings to random, chaotic oscillations, as predicted by the Melnikov method.  Fig.3a 

shows the predicted chaotic diffraction pattern. Fig.3b, however, shows a diffraction 

pattern for drive amplitudes beyond chaos corresponding to the occurrence of a stable 

subharmonic not quantitatively predicted by the present model and is the subject of further 

investigation.      

                                          

Figure 3. Acousto-optic diffraction patterns for larger transducer drive amplitudes: (a) 

chaotic region;  (b) stable subharmonic beyond chaos (from L. Adler, W. T. Yost, and J. 

H. Cantrell, AIP Conf. Proc. 1433, 527 (2012)). 
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