EOS Terra

Terra Constellation Exit/Future Maneuver Plans Update
Sept 27-29th, 2016

Dimitrios Mantziaras
Terra Mission Director - Code 428
phone 301-614-5234
fax 301-614-5267
Dimitrios.C.Mantziaras@nasa.gov
Brief History of Terra EOM Work

- Fuel ~ 100kgs trigging maneuver option analysis – Summer/Fall 2013
- Options sent to IOTs for their feedback – Apr 2014
- EOM Engineering Peer Review – July 2014
- Science Team Meeting – Aug 2014
- IOT feedback received – Sept 2014 (Proposed plan selected)
- Constellation MOWG – Oct 2014
- Briefing to NASA Program Exec – Jan/Feb 2015
- Waivers generated and sent for Goddard Signatures – Feb 2015
- Terra Senior Review Proposal Submitted – Mar 2015
- Waiver signatures received for Goddard – June 2015
- Constellation MOWG – June 2015
 – Aerospace presented their debris risk analysis
- Science Team Meeting – March 2016
- Constellation MOWG – April 2016
- Removed “Baseline” Plan and Created new “fallback” options – May->Aug 2016
- Constellation MOWG – September 2016

--

- Final Decision Deadline – Prior to Feb 2018
Lifetime Fuel Estimates

Fuel Usage Approximations:
~4 kg of fuel for every IAM
~0.15 kg of fuel for every DMU

Baseline Fuel Reserve = 45kgs
Proposed Fuel Reserve = 12kgs

~13.2 kgs

- Both S/C Vendor and AETD fuel estimation experts believe PVT and Bookkeeping x TSF are most accurate (red & light green lines)
- However, all analyses were performed using the bookkeeping estimates (most conservative)
Baseline vs. Proposed Plan Origin

• **Baseline Plan (19km):** Based on the 2010 definition from the Afternoon Constellation Operations Coordination Plan:
 – “The apogee of a spacecraft that has exited the constellation must be at least 2 kilometers below the minimum perigee of all current constellation members.”
 – To effectively exit the Constellation, exited spacecraft’s maximum apogee must be lowered below 692 km, which is 19 km below constellation members’ maximum apogee

• **Proposed Plan (4km):** Based on the Current Constellation Coordination Plan signed by all member missions:
 – Safe constellation exit is defined by being completely outside the constellation “envelope”
 – To effectively exit the Constellation, exited spacecraft’s maximum apogee will be at least 4 km below constellation members’ maximum apogee
Resultant Exit Orbit w/ varied Eccentricity

NOTE: No Orbital Interaction with the Constellation

- **Constellation Orbit**
- **4 km Exit Orbit**
- **19 km Exit Orbit**

Orbit Altitude
- **Proposed**: 708km x 686km
- **Baseline**: 690km x 656km
- **Delta**: 18km x 30km

Re-entry timeline
- **Baseline**: 2065
- **Proposed**: 2078
Baseline vs. Proposed Constellation Exit Plan (MLT)

- Difference in overall mission lifetime between baseline and proposed plan is 5 months
- Difference in science collection is additional ~3 years at tight MLT and current altitude
 - RMM fuel would be maintained throughout the mission lifetime
Long-Term Orbit Altitude

Terra Orbit Decay through 2050
Baseline and Proposed Plans

• Terra has been conservative its fuel estimation. Additional up to 16.7 kgs will be used for deorbit burns prior to passivation (~4 extra deorbit burns)

Decay Rates based on FreeFlyer analysis
1. Exit of 4km not low enough

 - Concern addressed:
 - Terra plans (and has always planned) to perform 2 exit burns to lower 5-6 kms below the constellation envelope

2. Possible debris source after constellation exit

 - Concern addressed:
 - Reserve RMM fuel up until passivation
 - Updated proposed plan and all new options include orbit lowering burns prior to passivation
REVISED LIFETIME PROPOSAL
AND FALLBACK OPTIONS
Updates for this MOWG

• Removed Baseline option
 – Based on old constellation requirement that no longer exists, therefore no reason to execute this plan

• Updated fuel estimate to predicted values instead of most conservative values
 – Conservative fuel analysis still performed to show range for reentry date

• Created new Fallback options if Proposed Plan is not approved
 – All new plans show constellation exit of 5-6kms and orbit lowering burns prior to passivation

• Updated charts to show decommissioning/orbit lowering burns prior to passivation
 – Show altitude through re-entry for all options
Future Work

• Kurt’s Hierarchy of Options is as follows:
 1. Proposed Plan (3 years extra at tight MLT & altitude) - DONE, add extra fuel piece
 2. Tight MLT and Altitude until after LDSC - DONE (Option 4)
 3. Altitude the same until after LDSC - Option 3 + Oct 2016 INC
 4. Altitude the same until we need to lower due to interfering with other missions - NEW

• Redo lifetime analysis for Baseline (reentry date only) and Proposed with new drag models
• (5) Create a burn everything now (Jan 2017) case to show earliest possible reentry (reentry date needed only)
• Make a comparison table of all options which includes dates for:
 – Tight MLT exit, Mission MLT exit, Constellation Exit, Deorbit & Re-entry
• Make MLT and Altitude plots that contain all options on the same graph
The following decommissioning options use an updated constellation “Envelope” definition for their constellation exit planning and are included in this package.

- **Option 1: Updated Proposed Plan (using expected fuel) – BEST for SCIENCE**
 - Terra performs nominal IAM and DMU planning thru Fall 2021.
 - Constellation Exit is performed in Jan 2022.
 - Decommissioning maneuvers (decreasing perigee) are planned with predicted fuel (add 13.2 kg over conservative) and unusable fuel (trapped in lines) of 2.3 kg (average of range provided by s/c vendor).

- **Option 2: Stop IAMs & DMUs after Fall 2016, exit constellation in 2018, drift until end of mission – lower orbit & passivate**
 - RESERVE ALL REMAINING FUEL for future orbit lowering burns
 - Terra will discontinue all Inclination & Drag Make Up maneuvers after the Fall 2016 series
 - Constellation Exit performed in early 2018
 - Terra takes science while drifting both MLT and Altitude until decision to end mission
 - Terra performs perigee-lowering burns with all remaining fuel at ~ MLT of 9:00 AM prior to spacecraft passivation

- **Fallback Option 1: Maintain Current Orbit (MLT & Altitude) until after LDSC**
 - Terra will perform nominal IAM and DMU planning until after LDSC (Aug 2017)
 - Constellation Exit performed in early 2018
 - Terra takes science while drifting both MLT and Altitude until decision to end mission
 - Terra performs perigee-lowering burns with all remaining fuel at ~ MLT of 9:00 AM prior to spacecraft passivation

- **Fallback Option 2: Maintain Orbit Altitude until after LDSC**
 - Terra will discontinue all Inclination series after the Fall 2016 series
 - Will still perform DMUs until constellation exit in early 2018
 - Terra takes science while drifting both MLT and Altitude until decision to end mission
 - Terra performs perigee-lowering burns with all remaining fuel at ~ MLT of 9:00 AM prior to spacecraft passivation

- **Fallback Option 3: Maintain Orbit Altitude for as long as possible**
 - Terra will discontinue all Inclination series after the Fall 2016 series
 - Will still perform DMUs until required to lower due to proximity to other mission or other reason (est @ MLT of 9AM)
 - Terra immediately performs perigee-lowering burns with all remaining fuel prior to spacecraft passivation
REVISED PROPOSED PLAN
Proposed Plan with additional fuel (Option 6)

Lifetime and Decommission Maneuvers

- **Terra Lifetime:**

<table>
<thead>
<tr>
<th>Mission Year (-)</th>
<th>Inclination Maneuvers (-)</th>
<th>DMU Maneuvers (-)</th>
<th>Fuel Used (kg)</th>
<th>Fuel Remaining (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>0 Spring, 1 Fall</td>
<td>1</td>
<td>3.92</td>
<td>73.43</td>
</tr>
<tr>
<td>2017</td>
<td>2 Spring, 2 Fall</td>
<td>3</td>
<td>15.05</td>
<td>58.39</td>
</tr>
<tr>
<td>2018</td>
<td>1 Spring, 2 Fall</td>
<td>1</td>
<td>10.79</td>
<td>47.59</td>
</tr>
<tr>
<td>2019</td>
<td>2 Spring, 1 Fall</td>
<td>3</td>
<td>10.77</td>
<td>36.82</td>
</tr>
<tr>
<td>2020</td>
<td>2 Spring, 0 Fall</td>
<td>2</td>
<td>7.11</td>
<td>29.72</td>
</tr>
<tr>
<td>2021</td>
<td>0 Spring, 0 Fall</td>
<td>2</td>
<td>0.23</td>
<td>29.48</td>
</tr>
</tbody>
</table>

- **Terra constellation exit and perigee-lowering:**

<table>
<thead>
<tr>
<th>Mission Year (-)</th>
<th>Maneuver Type (-)</th>
<th>Fuel Used (kg)</th>
<th>Fuel Remaining (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/11/2022</td>
<td>Envelope Exit #1</td>
<td>3.44</td>
<td>26.04</td>
</tr>
<tr>
<td>1/11/2022</td>
<td>Envelope Exit #2</td>
<td>3.42</td>
<td>22.62</td>
</tr>
<tr>
<td>2/19/2026</td>
<td>De-orbit #1</td>
<td>3.40</td>
<td>19.21</td>
</tr>
<tr>
<td>2/24/2026</td>
<td>De-orbit #2</td>
<td>3.39</td>
<td>15.83</td>
</tr>
<tr>
<td>2/26/2026</td>
<td>De-orbit #3</td>
<td>3.37</td>
<td>12.46</td>
</tr>
<tr>
<td>3/3/2026</td>
<td>De-orbit #4</td>
<td>3.35</td>
<td>9.11</td>
</tr>
<tr>
<td>3/5/2026</td>
<td>De-orbit #5</td>
<td>3.33</td>
<td>5.78</td>
</tr>
<tr>
<td>3/10/2026</td>
<td>De-orbit #6</td>
<td>3.31</td>
<td>2.47</td>
</tr>
</tbody>
</table>

Terra will drift to an MLT of 9:00 AM after constellation exit.
Proposed Plan with additional fuel (Option 6)

Mean Local Time
Proposed Plan with additional fuel (Option 6)

Lifetime Average Height
Proposed Plan with additional fuel (Option 6)

Lifetime Fuel Estimates

- **Bookkeeping (definitive)**
- **Bookkeeping X TSF**
- **PVT (High)**
- **PVT (Low)**

Terra will drift to an MLT of 9:00 AM after constellation exit.

Graph Details

- **X-axis**: Year
- **Y-axis**: Fuel Remaining (kg)

- **Legend**: Unusable Fuel, Definitive, Constellation Exit, Predictive, Perigee-Lowering Burns

Graph Notes

- The graph shows the fuel remaining over time from 2000 to 2025.
- The predicted fuel levels are compared under different scenarios: Definitive, Predictive, and with additional fuel (Option 6).
- Key events highlighted include Constellation Exit, Perigee-Lowering Burns, and Unusable Fuel levels.
FALLBACK OPTIONS
Stop all IAMs after Fall 2017 with additional fuel (Option 9)

Lifetime and Decommission Maneuvers

- **Terra lifetime:**

<table>
<thead>
<tr>
<th>Mission Year (-)</th>
<th>Inclination Maneuvers (-)</th>
<th>DMU Maneuvers (-)</th>
<th>Fuel Used (kg)</th>
<th>Fuel Remaining (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>1 Fall</td>
<td>1</td>
<td>3.92</td>
<td>71.07</td>
</tr>
<tr>
<td>2017</td>
<td>2 Spring. 2 Fall</td>
<td>3</td>
<td>15.05</td>
<td>56.02</td>
</tr>
</tbody>
</table>

- **Terra decommissioning:**

<table>
<thead>
<tr>
<th>Mission Date (-)</th>
<th>Maneuver Type (-)</th>
<th>Fuel Used (kg)</th>
<th>Fuel Remaining (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/11/2018</td>
<td>Envelope Exit #1</td>
<td>3.62</td>
<td>52.40</td>
</tr>
<tr>
<td>1/11/2018</td>
<td>Envelope Exit #2</td>
<td>3.60</td>
<td>48.80</td>
</tr>
<tr>
<td>12/19/2023</td>
<td>De-orbit #1</td>
<td>3.57</td>
<td>45.23</td>
</tr>
<tr>
<td>12/21/2023</td>
<td>De-orbit #2</td>
<td>3.55</td>
<td>41.68</td>
</tr>
<tr>
<td>12/26/2023</td>
<td>De-orbit #3</td>
<td>3.53</td>
<td>38.15</td>
</tr>
<tr>
<td>12/28/2023</td>
<td>De-orbit #4</td>
<td>3.51</td>
<td>34.64</td>
</tr>
<tr>
<td>1/2/2024</td>
<td>De-orbit #5</td>
<td>3.49</td>
<td>31.15</td>
</tr>
<tr>
<td>1/4/2024</td>
<td>De-orbit #6</td>
<td>3.47</td>
<td>27.68</td>
</tr>
<tr>
<td>1/9/2024</td>
<td>De-orbit #7</td>
<td>3.45</td>
<td>24.23</td>
</tr>
<tr>
<td>1/11/2024</td>
<td>De-orbit #8</td>
<td>3.43</td>
<td>20.80</td>
</tr>
<tr>
<td>1/16/2024</td>
<td>De-orbit #9</td>
<td>3.41</td>
<td>17.39</td>
</tr>
<tr>
<td>1/18/2024</td>
<td>De-orbit #10</td>
<td>3.39</td>
<td>14.00</td>
</tr>
<tr>
<td>1/23/2024</td>
<td>De-orbit #11</td>
<td>3.37</td>
<td>10.63</td>
</tr>
<tr>
<td>1/25/2024</td>
<td>De-orbit #12</td>
<td>3.35</td>
<td>7.28</td>
</tr>
<tr>
<td>1/30/2024</td>
<td>De-orbit #13</td>
<td>3.34</td>
<td>3.94</td>
</tr>
</tbody>
</table>
Stop all IAMs after Fall 2016 (Option 7)
Lifetime and Decommission Maneuvers

- Terra Lifetime:

<table>
<thead>
<tr>
<th>Mission Year (-)</th>
<th>Inclination Maneuvers (-)</th>
<th>DMU Maneuvers (-)</th>
<th>Fuel Used (kg)</th>
<th>Fuel Remaining (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>0 Spring, 1 Fall</td>
<td>1</td>
<td>3.92</td>
<td>73.43</td>
</tr>
<tr>
<td>2017</td>
<td>0 Spring, 0 Fall</td>
<td>2</td>
<td>0.21</td>
<td>73.22</td>
</tr>
</tbody>
</table>

- Terra constellation exit:

<table>
<thead>
<tr>
<th>Mission Year (-)</th>
<th>Maneuver Type (-)</th>
<th>Fuel Used (kg)</th>
<th>Fuel Remaining (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/11/2018</td>
<td>Envelope Exit #1</td>
<td>3.72</td>
<td>69.51</td>
</tr>
<tr>
<td>1/11/2018</td>
<td>Envelope Exit #2</td>
<td>3.69</td>
<td>65.81</td>
</tr>
</tbody>
</table>
Stop all IAMs after Fall 2016 (Option 7)
Lifetime and Decommission Maneuvers

• Terra perigee-lowering maneuvers:

<table>
<thead>
<tr>
<th>Mission Date (-)</th>
<th>Maneuver Type (-)</th>
<th>Fuel Used (kg)</th>
<th>Fuel Remaining (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/21/2022</td>
<td>De-orbit #1</td>
<td>3.67</td>
<td>62.14</td>
</tr>
<tr>
<td>6/23/2022</td>
<td>De-orbit #2</td>
<td>3.64</td>
<td>58.50</td>
</tr>
<tr>
<td>6/28/2022</td>
<td>De-orbit #3</td>
<td>3.62</td>
<td>54.88</td>
</tr>
<tr>
<td>6/30/2022</td>
<td>De-orbit #4</td>
<td>3.60</td>
<td>51.28</td>
</tr>
<tr>
<td>7/5/2022</td>
<td>De-orbit #5</td>
<td>3.57</td>
<td>47.71</td>
</tr>
<tr>
<td>7/7/2022</td>
<td>De-orbit #6</td>
<td>3.55</td>
<td>44.16</td>
</tr>
<tr>
<td>7/12/2022</td>
<td>De-orbit #7</td>
<td>3.53</td>
<td>40.63</td>
</tr>
<tr>
<td>7/14/2022</td>
<td>De-orbit #8</td>
<td>3.51</td>
<td>37.12</td>
</tr>
<tr>
<td>7/19/2022</td>
<td>De-orbit #9</td>
<td>3.49</td>
<td>33.63</td>
</tr>
<tr>
<td>7/21/2022</td>
<td>De-orbit #10</td>
<td>3.47</td>
<td>30.16</td>
</tr>
<tr>
<td>7/26/2022</td>
<td>De-orbit #11</td>
<td>3.45</td>
<td>26.71</td>
</tr>
<tr>
<td>7/28/2022</td>
<td>De-orbit #12</td>
<td>3.43</td>
<td>23.29</td>
</tr>
<tr>
<td>8/2/2022</td>
<td>De-orbit #13</td>
<td>3.41</td>
<td>19.88</td>
</tr>
<tr>
<td>8/4/2022</td>
<td>De-orbit #14</td>
<td>3.39</td>
<td>16.49</td>
</tr>
<tr>
<td>8/11/2022</td>
<td>De-orbit #16</td>
<td>3.35</td>
<td>9.77</td>
</tr>
<tr>
<td>8/16/2022</td>
<td>De-orbit #17</td>
<td>3.33</td>
<td>6.43</td>
</tr>
<tr>
<td>8/18/2022</td>
<td>De-orbit #18</td>
<td>3.32</td>
<td>3.11</td>
</tr>
</tbody>
</table>
Terra lifetime:

<table>
<thead>
<tr>
<th>Mission Year (-)</th>
<th>Inclination Maneuvers (-)</th>
<th>DMU Maneuvers (-)</th>
<th>Fuel Used (kg)</th>
<th>Fuel Remaining (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016</td>
<td>0 Spring, 1 Fall</td>
<td>1</td>
<td>3.92</td>
<td>73.43</td>
</tr>
<tr>
<td>2017</td>
<td>0 Spring, 0 Fall</td>
<td>2</td>
<td>0.21</td>
<td>73.22</td>
</tr>
<tr>
<td>2018</td>
<td>0 Spring, 0 Fall</td>
<td>3</td>
<td>0.27</td>
<td>72.96</td>
</tr>
<tr>
<td>2019</td>
<td>0 Spring, 0 Fall</td>
<td>1</td>
<td>0.08</td>
<td>72.88</td>
</tr>
<tr>
<td>2020</td>
<td>0 Spring, 0 Fall</td>
<td>2</td>
<td>0.15</td>
<td>72.73</td>
</tr>
<tr>
<td>2021</td>
<td>0 Spring, 0 Fall</td>
<td>3</td>
<td>0.33</td>
<td>72.39</td>
</tr>
</tbody>
</table>

Terra constellation exit:

<table>
<thead>
<tr>
<th>Mission Year (-)</th>
<th>Maneuver Type (-)</th>
<th>Fuel Used (kg)</th>
<th>Fuel Remaining (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/14/2021</td>
<td>Envelope Exit #1</td>
<td>3.71</td>
<td>68.68</td>
</tr>
<tr>
<td>12/14/2021</td>
<td>Envelope Exit #2</td>
<td>3.69</td>
<td>64.99</td>
</tr>
</tbody>
</table>
Constellation exit at MLT of 9:00 AM (Option 8)

Lifetime and Decommission Maneuvers

- **Terra perigee-lowering maneuvers:**

<table>
<thead>
<tr>
<th>Mission Date (-)</th>
<th>Maneuver Type (-)</th>
<th>Fuel Used (kg)</th>
<th>Fuel Remaining (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12/16/2021</td>
<td>De-orbit #1</td>
<td>3.66</td>
<td>61.33</td>
</tr>
<tr>
<td>12/21/2021</td>
<td>De-orbit #2</td>
<td>3.64</td>
<td>57.69</td>
</tr>
<tr>
<td>12/23/2021</td>
<td>De-orbit #3</td>
<td>3.61</td>
<td>54.08</td>
</tr>
<tr>
<td>12/28/2021</td>
<td>De-orbit #4</td>
<td>3.59</td>
<td>50.49</td>
</tr>
<tr>
<td>12/30/2021</td>
<td>De-orbit #5</td>
<td>3.57</td>
<td>46.92</td>
</tr>
<tr>
<td>1/4/2022</td>
<td>De-orbit #6</td>
<td>3.55</td>
<td>43.37</td>
</tr>
<tr>
<td>1/6/2022</td>
<td>De-orbit #7</td>
<td>3.53</td>
<td>39.84</td>
</tr>
<tr>
<td>1/11/2022</td>
<td>De-orbit #8</td>
<td>3.50</td>
<td>36.34</td>
</tr>
<tr>
<td>1/13/2022</td>
<td>De-orbit #9</td>
<td>3.48</td>
<td>32.86</td>
</tr>
<tr>
<td>1/18/2022</td>
<td>De-orbit #10</td>
<td>3.46</td>
<td>29.39</td>
</tr>
<tr>
<td>1/20/2022</td>
<td>De-orbit #11</td>
<td>3.44</td>
<td>25.95</td>
</tr>
<tr>
<td>1/25/2022</td>
<td>De-orbit #12</td>
<td>3.42</td>
<td>22.53</td>
</tr>
<tr>
<td>1/27/2022</td>
<td>De-orbit #13</td>
<td>3.40</td>
<td>19.12</td>
</tr>
<tr>
<td>2/1/2022</td>
<td>De-orbit #14</td>
<td>3.39</td>
<td>15.74</td>
</tr>
<tr>
<td>2/3/2022</td>
<td>De-orbit #15</td>
<td>3.37</td>
<td>12.37</td>
</tr>
<tr>
<td>2/8/2022</td>
<td>De-orbit #16</td>
<td>3.35</td>
<td>9.02</td>
</tr>
<tr>
<td>2/10/2022</td>
<td>De-orbit #17</td>
<td>3.33</td>
<td>5.69</td>
</tr>
<tr>
<td>2/15/2022</td>
<td>De-orbit #18</td>
<td>3.31</td>
<td>2.38</td>
</tr>
</tbody>
</table>
Mean Local Time

Mission Requirement

Operational Range

Year

Mean Local Time (Hours)

09:00
09:30
10:00
10:15
10:45

Option 6
Option 7
Option 8
Option 9

8/18/2016
Final Average Height

<table>
<thead>
<tr>
<th>Year</th>
<th>2018</th>
<th>2020</th>
<th>2022</th>
<th>2024</th>
<th>2026</th>
<th>2028</th>
<th>2030</th>
<th>2032</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terra Average Height (km)</td>
<td>700</td>
<td>675</td>
<td>650</td>
<td>650</td>
<td>650</td>
<td>650</td>
<td>650</td>
<td>650</td>
</tr>
</tbody>
</table>

- **Reduction to 675 km**
- **Reduction to 657 km**
- **Reduction to 644 km**
- **Reduction to 645 km**

Option 6
Option 7
Option 8
Option 9

8/18/2016
8/18/2016

Lifetime Fuel Estimates

Unusable Fuel

Terra will drift to an MLT of 9:00 AM before performing perigee-lowering burns.
Purpose: Confirm that the post-deorbit apogee will remain below the Constellation orbit for Terra options 3, 4, and 5

The post-deorbit radius was compared to the Constellation radius and the results plotted.

For all three cases, apogee remains below the Constellation Orbit.
Deorbit case summaries / Inputs

• **Option 3**
 - Deorbit burns executed on 02/15/2022 through 03/31/2022
 - Plot covers 02/10/2022 through 10/21/2024

• **Option 4**
 - Deorbit burns 12/26/2023 through 01/23/2024
 - Plot 1 covers 12/23/2023 through 10/03/2024
 - Plot 2 covers 10/03/2024 through 10/07/2027

• **Option 5**
 - Deorbit burns 12/26/2023 through 02/13/2024
 - Plot covers 12/23/2023 through 12/19/2026
Option 3 Results

Option 3 De-Orbit vs. Constellation Radius

07/19/2015

02/10/2022 to 10/21/2024
Option 4 Results

Option 4 De-Orbit vs. Constellation Radius

07/19/2016

12/23/2023 to 10/03/2024

Radius (km)

Argument of Latitude (deg)
Option 5 Results

Option 5 De-Orbit vs. Constellation Radius

07/19/2016

12/23/2023 to 12/19/2026
Debris Assessment Software

DISPOSAL ORBIT
Debris Assessment Software

• The Debris Assessment Software (DAS) was created by the Orbital Debris Office in Johnson Space Center and is currently on version 2.0.2
• DAS utilizes predicted F10.7 values for solar flux based on sine and cosine curve fits to definitive data
• The DAS contains a separate utility to estimate time-on-orbit, given the following inputs:
 – The operational orbit parameters
 – The “Start” date (ex. Decommissioning date)
• In turn, DAS outputs:
 – Calculated Orbit Lifetime from the “Start” date
 – The last year of propagation
• This tool was used to find the reentry dates for the different plans.
• The Area to Mass ratio used in this analysis used a tumbling area (43.95 m²) based on NASA-STD-8719.14A compared to Terra’s operational area (40.5 m²). A higher area decreases the time on orbit therefore Terra reenters early.
Disposal Orbits

Time-on-Orbit Comparisons

- **An A/M Ratio of 0.0099 was used in the DAS 2.02 Time-on-Orbit tool. This was calculated using Terra’s tumbling area.**

<table>
<thead>
<tr>
<th>Decommissioning Plan</th>
<th>Final Apogee (km)</th>
<th>Final Perigee (km)</th>
<th>Year of final de-orbit burn</th>
<th>On orbit time (yrs)</th>
<th>Reentry date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>689.08</td>
<td>672.05</td>
<td>2020</td>
<td>44</td>
<td>2064</td>
</tr>
<tr>
<td>Proposed Plan with conservative fuel estimate (Option 2)</td>
<td>706.50</td>
<td>689.76</td>
<td>2022</td>
<td>54</td>
<td>2076</td>
</tr>
<tr>
<td>Stop all IAMs after Spring 2016 with conservative fuel estimate (Option 3)</td>
<td>703.83</td>
<td>633.38</td>
<td>2022</td>
<td>34</td>
<td>2056</td>
</tr>
<tr>
<td>Stop all IAMs after Fall 2017 with conservative fuel estimate (Option 4)</td>
<td>702.58</td>
<td>660.02</td>
<td>2024</td>
<td>44</td>
<td>2068</td>
</tr>
<tr>
<td>Stop all IAMs after Fall 2017 with additional fuel (Option 5)</td>
<td>701.76</td>
<td>635.22</td>
<td>2024</td>
<td>40</td>
<td>2064</td>
</tr>
<tr>
<td>Proposed Plan with additional fuel (Option 6)</td>
<td>702.31</td>
<td>671.43</td>
<td>2026</td>
<td>50</td>
<td>2076</td>
</tr>
<tr>
<td>Stop all IAMs after Fall 2017 with additional fuel and updated fuel buffer (Option 9)</td>
<td>701.69</td>
<td>635.59</td>
<td>2024</td>
<td>40</td>
<td>2064</td>
</tr>
<tr>
<td>Stop all IAMs after Fall 2016 (Option 7)</td>
<td>701.00</td>
<td>608.50</td>
<td>2022</td>
<td>31</td>
<td>2053</td>
</tr>
<tr>
<td>Stop all IAMs after Fall 2016 and exit at MLT of 9:00 AM (Option 8)</td>
<td>700.26</td>
<td>613.76</td>
<td>2022</td>
<td>31</td>
<td>2053</td>
</tr>
</tbody>
</table>
Additional Slides

• Lifetime Maneuver Table
• Solar Flux Used in Analysis
• Aerospace Risk Assessment Study Results
Baseline Plan

<table>
<thead>
<tr>
<th>Mission Year (--)</th>
<th>Inclination Maneuvers (--)</th>
<th>Delta Inclination (Deg)</th>
<th>DMU Maneuvers (--)</th>
<th>Fuel Used (kg)</th>
<th>Fuel Remaining (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>2 Spring, 1 Fall</td>
<td>0.011873</td>
<td>7</td>
<td>12.427</td>
<td>69.175</td>
</tr>
<tr>
<td>2016</td>
<td>2 Spring, 1 Fall</td>
<td>0.044187</td>
<td>3</td>
<td>11.559</td>
<td>57.616</td>
</tr>
<tr>
<td>2017</td>
<td>2 Spring, 2 Fall</td>
<td>0.043461</td>
<td>3</td>
<td>14.945</td>
<td>42.671</td>
</tr>
<tr>
<td>2018</td>
<td>0 Spring, 0 Fall</td>
<td>0</td>
<td>2</td>
<td>0.210</td>
<td>42.461</td>
</tr>
<tr>
<td>2019</td>
<td>0 Spring, 0 Fall</td>
<td>0</td>
<td>2</td>
<td>0.188</td>
<td>42.273</td>
</tr>
<tr>
<td>2020</td>
<td>0 Spring, 0 Fall</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>42.273</td>
</tr>
</tbody>
</table>

Proposed Plan

<table>
<thead>
<tr>
<th>Mission Year (--)</th>
<th>Inclination Maneuvers (--)</th>
<th>Delta Inclination (Deg)</th>
<th>DMU Maneuvers (--)</th>
<th>Fuel Used (kg)</th>
<th>Fuel Remaining (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td>2 Spring, 1 Fall</td>
<td>0.011891</td>
<td>7</td>
<td>12.389</td>
<td>69.213</td>
</tr>
<tr>
<td>2016</td>
<td>2 Spring, 1 Fall</td>
<td>0.033162</td>
<td>3</td>
<td>11.579</td>
<td>57.634</td>
</tr>
<tr>
<td>2017</td>
<td>2 Spring, 2 Fall</td>
<td>0.04346</td>
<td>3</td>
<td>14.962</td>
<td>42.672</td>
</tr>
<tr>
<td>2018</td>
<td>1 Spring, 2 Fall</td>
<td>0.031675</td>
<td>3</td>
<td>10.964</td>
<td>31.708</td>
</tr>
<tr>
<td>2019</td>
<td>2 Spring, 1 Fall</td>
<td>0.031061</td>
<td>3</td>
<td>10.733</td>
<td>20.975</td>
</tr>
<tr>
<td>2020</td>
<td>2 Spring, 0 Fall</td>
<td>0.02046</td>
<td>2</td>
<td>7.067</td>
<td>13.908</td>
</tr>
<tr>
<td>2021</td>
<td>0 Spring, 0 Fall</td>
<td>0</td>
<td>2</td>
<td>0.169</td>
<td>13.739</td>
</tr>
<tr>
<td>2022</td>
<td>0 Spring, 0 Fall</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13.739</td>
</tr>
</tbody>
</table>

Predictions as of September 21st, 2015

- In either case, DMUs are performed for ~2 years after inclination maneuvers stop (orbit altitude maintained)
Option 3 Plan
Lifetime and Decommission Maneuvers

- Terra Lifetime:

<table>
<thead>
<tr>
<th>Mission Year (-)</th>
<th>Inclination Maneuvers (-)</th>
<th>DMU Maneuvers (-)</th>
<th>Fuel Used (kg)</th>
<th>Fuel Remaining (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016 - 2017</td>
<td>0</td>
<td>3</td>
<td>0.3840</td>
<td>61.4646</td>
</tr>
</tbody>
</table>

- Terra Decommissioning:

<table>
<thead>
<tr>
<th>Mission Year (-)</th>
<th>Maneuver Type (-)</th>
<th>Fuel Used (kg)</th>
<th>Fuel Remaining (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/11/2018</td>
<td>Envelope Exit #1</td>
<td>3.7451</td>
<td>57.7195</td>
</tr>
<tr>
<td>1/11/2018</td>
<td>Envelope Exit #2</td>
<td>3.7201</td>
<td>53.9994</td>
</tr>
<tr>
<td>2/15/2022</td>
<td>De-orbit #1</td>
<td>3.6956</td>
<td>50.3039</td>
</tr>
<tr>
<td>2/17/2022</td>
<td>De-orbit #2</td>
<td>3.6716</td>
<td>46.6323</td>
</tr>
<tr>
<td>2/22/2022</td>
<td>De-orbit #3</td>
<td>3.6482</td>
<td>42.9841</td>
</tr>
<tr>
<td>2/24/2022</td>
<td>De-orbit #4</td>
<td>3.6252</td>
<td>39.3589</td>
</tr>
<tr>
<td>3/1/2022</td>
<td>De-orbit #5</td>
<td>3.6028</td>
<td>35.7561</td>
</tr>
<tr>
<td>3/3/2022</td>
<td>De-orbit #6</td>
<td>3.5808</td>
<td>32.1754</td>
</tr>
<tr>
<td>3/8/2022</td>
<td>De-orbit #7</td>
<td>3.5592</td>
<td>28.6161</td>
</tr>
<tr>
<td>3/10/2022</td>
<td>De-orbit #8</td>
<td>3.5381</td>
<td>25.0780</td>
</tr>
<tr>
<td>3/15/2022</td>
<td>De-orbit #9</td>
<td>3.5174</td>
<td>21.5606</td>
</tr>
<tr>
<td>3/17/2022</td>
<td>De-orbit #10</td>
<td>3.4971</td>
<td>18.0634</td>
</tr>
<tr>
<td>3/22/2022</td>
<td>De-orbit #11</td>
<td>3.4773</td>
<td>14.5862</td>
</tr>
<tr>
<td>3/24/2022</td>
<td>De-orbit #12</td>
<td>3.4578</td>
<td>11.1284</td>
</tr>
<tr>
<td>3/29/2022</td>
<td>De-orbit #13</td>
<td>3.4386</td>
<td>7.6898</td>
</tr>
</tbody>
</table>
Predicted Solar Flux Data
April 2016 Schatten and March 2016 DAS

![Graph showing predicted solar flux data from 2016 to 2044. The graph compares different models: Schatten MeanNom, Schatten Plus Nom (+2sig), Schatten Minus Nom (-2sig), and DAS 2.02 (2016 update). The x-axis represents years from 2016 to 2044, and the y-axis represents F10.7 Solar Flux Value ranging from 0 to 200.]
Constellation Envelope
Definition

- All additional options are based on being completely **outside** the Constellation “envelope” and are represented by the following equation*:

\[
|sma_R - sma_B| - |sma_R \cdot e_R - sma_B \cdot e_{BMax}| > \text{Margin} + \text{Frozen Orbit Tolerance}
\]

Where:

- \(sma_R\) = Mean semi-major axis of the 705km Reference Orbit
- \(e_R\) = Mean eccentricity of the 705km Reference Orbit
- Margin = 2.5 km
- Frozen Orbit Tolerance = 1.5 km and is based on a maximum eccentricity deviation of 0.0002
- \(B\) subscript references the satellite in question (e.g. Terra)

*Source: 2014 Operations Coordination Plan for the Morning and Afternoon Constellations
Aerospace Corp. Debris Risk Assessment Results

Debris Distribution by Altitude (60-Day)

Most fragments remain within 630 – 710 km band

log(particles/km³)

-8 -7 -6 -5 -4

Total Debris Density Over All Inertial Direction Bins: log(particles/km³) Bin Height = 50.0 km

- Debris field is concentrated over 80km band
- Debris spreads over 3000kms of orbit altitude = No “Safe” Disposal Orbit (other than the ocean)

Gabbard Plot of Fragment Distribution

- Max altitude: 3,500 km (1 fragment → worst case)
- Low perigee fragments only survive 1-2 revs

Debris field is spread over thousands of kilometers

• Aerospace Corp tasked to review risk to Constellation if proposal approved
Debris Risk Study Results (cont)

- **Difference in Risk is SMALL**: The Aerospace Corporation found for a 100% breakup of Terra

<table>
<thead>
<tr>
<th>Worst-Case Risk</th>
<th>Probability</th>
<th>Delta</th>
<th>Odds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current</td>
<td>9.20E-06</td>
<td></td>
<td>1 in 108,700</td>
</tr>
<tr>
<td>Terra break-up @ 19km</td>
<td>9.70E-06</td>
<td>5.4%</td>
<td>1 in 103,100</td>
</tr>
<tr>
<td>Terra break-up @ 4km</td>
<td>1.00E-05</td>
<td>8.7%</td>
<td>1 in 100,000</td>
</tr>
</tbody>
</table>

Perspective
- From NOAA website (US only) -> Odds of being struck by lightening in your lifetime (80 years) = **1 in 12,000**
- Odd of **dying** in a car accident (US only) = **1 in 4,000-8,000/year ; 1 in 50-100/lifetime**
- Odds of hitting Powerball jackpot = **1 in 175,223,510**

- **Other LARGE objects close by**: Based on a review of SATCAT at JSpOC, there are currently **772** other objects with a cross sectional area greater than **12.6 square meters** or a radius larger than 2 meters that cross through altitudes of **685 to 725 km**.
 - Approximately 103 of these objects are in near circular orbits such that they remain within the altitude band for most if not all of their orbit. For comparison then, there are already **103 Terra-sized objects** near enough to the 705 km constellation to create a risk similar to the results reported in this study.

- Risk to Constellation between exit at 19km vs. 4km is very SMALL (Δ=3.3%)
- Risk exists today and in the future, regardless of what Terra does
Terra Science Team Meeting Results

- **Attendees:** NASA Program Exec, Project Scientist, Mission Director, Instrument Team Leads, Instrument Scientist, Instrument Data Processing experts, JPL Management & Flight Dynamics expert

- **Topics covered**
 - Future Lunar Deep Space Calibration Maneuver (LDSC)
 - Future maneuver plans (Baseline & Proposed or Other Options)
 - Impacts to each instruments science data due to an MLT or Altitude change
 - Content of report & recommendation from the team to NASA HQ and Science Panel

- **Meeting Summary**
 - As stated by 2015 Senior Review Panel, Terra will continue to collect high quality data of sufficient value to warrant mission continuation regardless of if waiver is approved
 - Longer science record (closer to 20 years) increases probability that secular climate trends can be distinguished from inter-annual variability
 - A change in MLT of 15 mins equates to a 1% change in cloud fraction for boundary layer stratocumulus clouds
 - A change in MLT of 15 mins equates to a 1°C change in mean land surface temperature or 0.025 °C in sea surface temperature
 - Change to Altitude & Inclination (MLT) will change WRS-2 ground track & 16 day repeat cycle
 - Change to Altitude will require changes to Level 1 processing for both ASTER and MISR
 - Changes will take approximately 1 year for ASTER and 2 years for MISR

- **Decisions Made**
 1. Lunar Deep Space Calibration Maneuver will take place in July 2017 regardless of waiver approval
 - May perform Deep Space Calibration without the moon for CERES at some future data as well
 2. Recommendation from instrument teams and project scientist will be to request the 3 additional years at the current MLT and altitude
Terra Science Team Meeting Results

• Other Options Maneuver Plans to be analyzed

3. Stop all IAMs now (Savings of 4 IAMs to Baseline plan)
 • Perform 4+ Km Constellation Exit after LDSC (early 2018)
 • Drift MLT to 9am (or farther)
 • Use all remaining fuel to lower orbit – Bookkeeping method with conservativism used as fuel estimate

4. Continue with next 4 IAMs (as planned in Baseline plan)
 • Perform 4+ km Constellation Exit after LDSC (early 2018)
 • Drift MLT to 9am (or farther)
 • Use remaining fuel to lower orbit
 a) Bookkeeping method with conservative fuel estimate
 b) PVT/Expected fuel (13.2 kgs more) plus additional fuel from lines (3.5 kgs) = 16.7 kgs possible extra fuel
 » 5 kg of propellant is assumed unusable (will remain in propulsion lines) - Believed to be overly conservative value
 • Spacecraft manufacturer has since estimated 1.5 kg (with worst case of 3.9 kg)
 • The remaining 1.1 - 3.5 kg will be conserved for future RMMs
 • One RMM approximately 0.1kgs of fuel, so approximately 11-35 RMMs in reserve
 • Only 10 RMMs performed on Terra since launch (15+ years)

• Next Steps
 – Present summary of findings from meeting to Science Panel and NASA HQ (4/6) – COMPLETE
 • Feedback from panel is that there is a science case to justify requesting the proposed 3 years of tight MLT and current altitude
 – Perform analysis on potential other options (listed above) to be ready if waiver is denied
 • Expected completion by June 2016
 – Provide analysis to decision makers and await final decision
Disposal Orbits
Time-on-Orbit Comparisons

• *If the Operational Area (40.5 m²) was used for the area-to-mass ratio.*
• *A/M = 0.00914.*

<table>
<thead>
<tr>
<th>Decommissioning Plan</th>
<th>Final Apogee (km)</th>
<th>Final Perigee (km)</th>
<th>Year of final de-orbit burn</th>
<th>On orbit time (yrs)</th>
<th>Reentry date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>689.08</td>
<td>672.05</td>
<td>2020</td>
<td>44</td>
<td>2066</td>
</tr>
<tr>
<td>Proposed Plan with conservative fuel estimate (Option 2)</td>
<td>706.50</td>
<td>689.76</td>
<td>2022</td>
<td>56</td>
<td>2078</td>
</tr>
<tr>
<td>Stop all IAMs after Spring 2016 with conservative fuel estimate (Option 3)</td>
<td>703.83</td>
<td>633.38</td>
<td>2022</td>
<td>39</td>
<td>2061</td>
</tr>
<tr>
<td>Stop all IAMs after Fall 2017 with conservative fuel estimate (Option 4)</td>
<td>702.58</td>
<td>660.02</td>
<td>2024</td>
<td>51</td>
<td>2075</td>
</tr>
<tr>
<td>Stop all IAMs after Fall 2017 with additional fuel (Option 5)</td>
<td>701.76</td>
<td>635.22</td>
<td>2024</td>
<td>41</td>
<td>2065</td>
</tr>
<tr>
<td>Proposed Plan with additional fuel (Option 6)</td>
<td>702.31</td>
<td>671.43</td>
<td>2026</td>
<td>52</td>
<td>2078</td>
</tr>
<tr>
<td>Stop all IAMs after Fall 2016 (Option 7)</td>
<td>701.00</td>
<td>608.50</td>
<td>2022</td>
<td>33</td>
<td>2055</td>
</tr>
<tr>
<td>Stop all IAMs after Fall 2016 and exit at MLT of 9:00 AM (Option 8)</td>
<td>700.26</td>
<td>613.76</td>
<td>2022</td>
<td>33</td>
<td>2055</td>
</tr>
<tr>
<td>Stop all IAMs after Fall 2017 with additional fuel and updated fuel buffer (Option 9)</td>
<td>701.69</td>
<td>635.59</td>
<td>2024</td>
<td>42</td>
<td>2066</td>
</tr>
</tbody>
</table>
Questions