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Motivations

/7

¢ Validate the accuracy of the displacement transfer functions (DTFs) when
applied to the swept-wing structure

/7

» Evaluate real time shape sensing possibility and efficiency to support future
flight testing activities for the Gl aircraft

/7

¢ Evaluate the accuracy of the wing deflection estimation when changing the
number of strain stations
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Background

% In June 2003, Helios broke up during flight test due to
pitching oscillation under large wing dihedral bending.
Therefore, real time wing deformed shape monitoring during
flight is needed.

% In 2007, Ko et al developed the Displacement Transfer
Functions for transforming surface strain into deflections for
wing deformed shape estimations.

% Displacement Transfer Functions have been applied to wing
shape predictions of Ikhana and Global Hawk successfully

s Inlate 2009, NASA Armstrong Flight Research Center
[AFRC] acquired a Gulfstream Il [G-1ll] business jet airplane ) : :
(Gulfstream Aerospace Corporation, Savannah, Georgia) to A
conduct various research projects s ,

s The current AFRC project utilizing the G-Il airplane is the
Adaptive Compliant Trailing Edge [ACTE] flap experiment.
These unconventional adaptive compliant flap structures
developed by FlexSys Inc. (Ann Arbor, Michigan) replaced
the conventional Fowler flaps.

% Due to the modification of the control surfaces, extensive
ground load tests have been done on the GlII aircraft for the : o i L A
wing load calibration
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Due to differences between the ACTE
structure and the original Fowler flaps
with respect to weight, geometry, and ,
flight-testing conditions, the aerodynamic N 1 1 A photgrammet
and inertial loads were expected to be S T targets
different ' : | |

In order to protect the wing structure
during flight, load equations were
developed using strains loads data from
a ground load calibration test. These load
equations were integrated in the Mission T % D : s :
Control Room for real-time monitoring of 3 : ; ' S Load Pads (LRTs) |
the aerodynamic loads during flight. 7\\ m—_“ni?f-_m__:&
Wing deflected shape under load was . == ' - = === —
also characterized and used to tune

existing FEM models of the G-Il wing
structure.

Load case | Type of loading Description
1 Shot bags Outboard loading
3 Combined Forward shot and aft hydraulic loading
6 Combined Aft shot and forward hydraulic loading
24 Hydraulic Maximum loading
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Finite Element Model Correlations

s+ Two finite element models o

<+ Model 1 built from CAD (Top) AR
s Model 2 built from Stress Report (Bottom) ===
Table 1. Finite element model correlations for load case 1.
String pot Measu_red Wing box model 1 Wing box model 2
deflection Deflection |Difference, %| Deflection [Difference, %
1 -1.00 -0.96 -4 -0.98 -2
2 -0.95 -0.91 -4 -0.93 -2
3 -0.44 -0.43 -3 -0.42 -5
4 -0.46 -0.45 -2 -0.44 -3 Model 1
5 -0.23 -0.22 -4 -0.20 -11
6 -0.21 -0.20 -3 -0.19 -8
Table 2. Finite element model correlations for load case 3.
LRT Measured Wing box model 1 Wing box model 2
deflection Deflection |Difference, %| Deflection |Difference, %
1 1.00 0.99 -1 1.01 1
2 0.96
3 0.83 0.82 0 0.83 0
4 0.80
5 0.67 0.68 1 0.64 -4
6 0.65
7 0.20 0.20 -3 0.15 -25
8 0.15
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Finite Element Correlations (Cont.)

Table 3. Finite element model correlations for load case 6.

LRT Measured Wing box model 1 Wing box model 2
deflection Deflection |Difference, %| Deflection [Difference, %
1 1.04
2 1.00 1.03 3 1.07 7
3 0.86
4 0.85 0.86 2 0.88 4
5 0.70
6 0.67 0.71 5 0.68 1
7 0.18
8 0.19 0.18 -9 0.16 -16
Table 4. Finite element model correlations for load case 24.
LRT Measured Wing box model 1 Wing box model 2
deflection Deflection [Difference, %| Deflection [Difference, %

1 1.00 1.07 7 1.09 9
2 1.00 1.05 5 1.07 7
3 0.86 0.90 4 0.90 5
4 0.86 0.89 3 0.89 4
5 0.70 0.74 6 0.70 1
6 0.70 0.73 4 0.69 -1
7 0.21 0.21 -2 0.17 -21
8 0.17 0.18 8 0.16 -2
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Displacement Theory

% Shifted Lagrangian curvature equation:
Increased to maintain
same £(s)/c(s)
o d*y/dx’ - d’y/dx’ _dy _ &)
R(x) 1= (dv/dx)? Sfiﬁi“gj(z“:o) J1-0 dx®  c(s) (1)
\/ ( y/ ) o= Increased m

*

Piece-wise representations:

X- X._
c(x)=c.,+(c;- c.,) L

o/ (x.,Ex£x)

)=, +(8- €)= (aExEx) [T

Slope [integration of (1)]:

tang(x) = Q = A @

dx  c(x)

Beam elastic curva
Incemental beam [deformed neutral axis)
dx+tang,_, Insines

Deflection [integration of (2)]:

A
!
3
[
'
!

LA’B’=AB[I+£(J}I

y(x)= Jj_ tanf()dx+ y,, = e rlltT g e

I

(3) \— Undetormed
~ “/ Deflection

Integration of slope at x;_
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Displacement Transfer Functions

Slope equation (recursive form):

. &_4Ci — &Ci_
tan; = (AD); I Cl+ l(cl : ;)121
— ¢ i—1— Cj

Ci
log + tanf;_4
Ci—1

Slightly
nonuniform  (Al); Ci l
- 2 — g1 + & | + tanb;_
(ci-i=c)  2¢i4 ciog) T e 4)

Uniform (AD);
-

= =0 e (gi_1 + &) + tanb;_4
i-1 = ¢ —

Deflection equation (recursive form):

—& &G T &l
= (@bi l l cilo + (¢ ) + +(Al);tan6;
2( Ci— 1—C1) (cicg —¢)3 9. Ciq (cim1 — Yi—1 +(AD; i-1
Slightly
nonuniform (A7 ¢
3= 1+ & |+ yiog + (AD;tan6; 5
(Cia~c) 66, e, )t + & | +yio1 + (ADtand; (5)

Uniform (Al)2
ﬁ

(cicy=c;=c¢)

(2gj_1 + &) + yi—1 + (AD);tanb;_,
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Deformed Shape Visualization

¢+ Structure deformed shape visualization Procedure

Computer Program for

Deformed Shape
Visualizations
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DTFs Application

)
0’0

Use four strain-sensing lines (use two strain-sensing lines if c¢; is known).
» Discretize the beam into n domains
Determine the neutral axis (depth factor, c;)

D

)
0’0

% 1
— hy
%

\
\ / Doubly-
tapered wing

& E
Ci= —hi —
€i+€i

Neutral axis

% Use equation (4) to calculate slope tané;

% Use equation (5) to calculate deflection y;

Upper strain
sensing lines

+ Calculate the cross sectional twisted angle

Lower strain
sensing lines

!

¢i=sin-1<%> (i=0,12,3..,n)

130030.1
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Surface Strains for Load Case 24

% Load case 24
% Strains output from FEM model 2
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Deflection Comparison

+ Use equation (4) to calculate deflection
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Twist Angle Comparison

< Twist angle calculate from  ¢; = sin™! <yi ; Yi>
i

Strain Stations
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Convergent Study

% Wing deflection base on different number of strain stations
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Wing Tip Deflection Error

% Wing tip deflection error from 12% with 5 strain stations reduces to 1.6% with 17 strain stations
s Further increase number of strain stations will increase the error percentage
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Conclusion

s The displacement transfer functions (DTFs) were applied to the Gl swept wing
for the deformed shape prediction.

s The calculated deformed shapes are very close to the correlated finite element
results as well as the measured data

+ The convergence study showed that using 17 strain stations, the wing-tip
displacement prediction error was 1.6 percent, and that there is no need to use a
large number of strain stations for G-I11 wing shape predictions.
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