Abstract

The use of composite materials continues to increase in the aerospace community due to the potential benefits of reduced weight, increased strength, and manufacturability. Ongoing work at NASA involves the use of the large-scale composite structures for spacecraft (payload shrouds, cryotanks, crew modules, etc). NASA is also working to enable both the use and sustainment of composites in commercial aircraft structures. One key to the sustainment of these large composite structures is the rapid, in-situ characterization of a wide range of potential defects that may occur during the vehicle’s life. Additionally, in many applications it is necessary to monitor changes in these materials over their lifetime. Quantitative characterization through Nondestructive Evaluation (NDE) of defects such as reduced bond strength, microcracking, and delamination damage due to impact, are of particular interest. This paper will present an overview of NASA’s applications of NDE technologies being developed for the characterization and sustainment of advanced aerospace composites. The approaches presented include investigation of conventional, guided wave, and phase sensitive ultrasonic methods and infrared thermography techniques for NDE. Finally, the use of simulation tools for optimizing and validating these techniques will also be discussed.

1 Introduction

In recent years the aerospace community has increased the use of composites in aeronautical and space vehicles. As demonstrated by the Boeing 787’s use of composites [1], NASA’s Composite Crew Module [2] and liquid hydrogen (LH2) cryogenic tanks [3], there is a push toward use of composites for primary structural components. As these composite structures become larger and more complex, nondestructive evaluation (NDE) techniques capable of quantifying and fully characterizing damage are needed. The ability to quantitatively characterize damage in carbon fiber reinforced polymer (CFRP) composite components is required to enable damage progression models capable of yielding accurate remaining life predictions. For example, the depth at which delaminations occur is directly related to how damage growth progresses [4]. Therefore, a ‘full’ characterization of delamination damage needs to go beyond a quantitative measure of the in-plane area (size) of the damage, to also include the depth/ply at which the damage occurs. For multilayered delamination damage, a full assessment would ideally include the depth and size of all delaminations, if possible. A ‘full’ damage characterization for other damage types may require different damage information. Microcracking may be best characterized by a measure of microcrack density correlated to depth through the material, while fiber waviness may require a statistical measure of the affected...
locations and corresponding ranges in the angle of unintended in-plane or out-of-plane alignment/waviness of fibers (i.e., a ‘waviness angle’ range) [5, 6].

The challenge of acquiring quantitative NDE damage characterization for aerospace composites is compounded not only by the size of the structure and complexity of the damage types occurring in composites, but also by the complex geometries of composite components required for aerospace applications. The research approaches of NASA’s Nondestructive Evaluation Sciences Branch (NESB) include investigation of conventional, guided wave, and phase sensitive ultrasonic methods, infrared thermography and x-ray computed tomography techniques. The use of simulation tools for optimizing and developing these methods is also an active area of research. This paper will focus on research activities related to large area NDE for rapidly characterizing aerospace composites.

2 Inspection Technologies

2.1 Flash Infrared Thermography

Flash infrared thermography has been used extensively as a large area rapid inspection technology for composite structures. The flash thermography system typically used by NESB is the commercially available Echotherm® system from Thermal Wave Imaging, Inc. The system features a flash hood containing a 640 x 512 element FLIR SC6000 infrared (IR) camera with two 4800-Joule xenon photographic flash tubes. The hood has dimensions of 36.8 cm wide by 26.7 cm deep by 40.6 cm tall and is configured such that the IR camera views the inspection surface directly. The flash produces an energy density of 7.15 joules per square centimeter at the mouth of the hood (based on the final temperature increase of a reference specimen and the nominal thermal properties of that reference). The flash lamp provides a uniform illumination of within 10% across an area of 24.8 cm x 32.7 cm (for a flat reference standard at the mouth of the hood as determined from measurements of the temperature rise of the reference material). The flash creates an initial temperature increase of the inspection surface of less than 10°C. A photograph of the flash thermography system is shown in Fig. 1. The hood is connected to a base station, which houses the system computer and power sources for the various components. Thermographic inspection is accomplished by placing the hood on the section of material to be inspected. The bottom of the hood completely surrounds or sits atop the material, depending on the dimension of the specimen. The flash lamps are triggered either by operator controls on the hood or by the computer. Thermographic images of the specimen are captured by the IR camera for a predetermined amount of time and stored in the computer for further analysis. The camera’s noise equivalent temperature difference, cited by the manufacturer, is 0.025°C. The detector array operates in the 3 to 5 micrometer wavelength range. External optics, consisting of a wide-angle lens (25mm focal length), using germanium optical elements, are used to increase the system field-of-view to 21.7º horizontally and 17.5º vertically.

Fig. 1 Photograph of the flash thermograph system.

Fig. 2 shows an implementation of flash thermography for large area composite inspection. The test specimen is a composite cylinder 10m in diameter and 4m in height, built as 5 panels connected with bonded joints. Inspection of the cylinder required approximately 10 hours per side (interior and
exterior) and yielded 250 GB of thermal data. The thermal system is translated over the entire surface of the specimen using a custom scanning rail system that follows the curvature of the cylinder. Data acquisition consists of positioning the camera and hood, triggering the flash heating, collecting data for 15s after the heating, storing the data and indexing the scanner to the next inspection location. Total inspection time per location is approximately 45s. Data analysis was performed using Principal Component Analysis (PCA) with model derived eigenvectors [7, 8]. Details of this analysis technique are discussed in Section 3 of this paper. This approach reduced the processing time per data set (~250 MB) to less than 1s, which is less than the time required to move the camera and hood to the next inspection location. As an example of typical results, Fig. 3 shows a PCA processed mosaic of the inspections results from a portion of one of the joints on the inner mold line of the specimen. The dark regions of Fig. 3 appear to be areas of excess resin in the joint, while the light regions (a few of which are indicated by red arrows) are consistent with areas of poor bonding.

Fig. 2 System configured for large area inspection of a composite test article.

Fig. 3 Mosaic images showing PCA processed thermal results for a portion of joint number 2 from the inner mold line

In addition to qualification of manufactured parts, infrared thermography is an ideal candidate technology for in-situ inspection enabling the sustainment of in-service structures. For example, NASA has been using IR thermography for on-orbit inspection of manned flight vehicles for a number of years [9-12]. Fig. 4 shows an IR inspection system configured for use by astronauts during an extravehicular activity (EVA). Fig. 5 shows the results of EVA inspections, both from the International Space Station (ISS) and from the Space Shuttle. Fig. 5a shows processed results from a space shuttle EVA using the IR inspection system coupled with solar heating for inspection of both damaged reinforced carbon-carbon specimen and an NDE flat-bottom-hole standard. Fig. 5b shows processed results from an IR inspection of a damaged ISS radiator. This example shows how the IR imagery temperature data can be analyzed to show that there is heat rejection loss for the area under the peeled up face sheet [12].

Fig. 4 Infrared inspection system designed for on-orbit inspections.
2.2 Large Area Ultrasonics

Ultrasound is a valuable technology for the nondestructive inspection of aerospace structures. In the majority of situations, an ultrasonic probe must be coupled to the structure by physical contact. A fluid medium promotes complete coupling of the acoustic wave into the material. Often, solid coupling devices such as stand-offs or wedges provide time delay and incident angle control of the sound waves into the part. Solid stand-offs and wedges can be shaped to match planar and fixed curvature surfaces. However, ultrasonic coupling problems occur when surfaces deviate from the shape of a solid coupling device. Furthermore, the ultrasonic beam from a contact probe is typically in the near field of the transducer and unfocused. In a given application, the lateral resolution obtained may be inadequate for the required measurement. Therefore, for large area, high speed applications NASA Langley has chosen to implement a captive water column coupling approach [13]. This provides coupling that is similar to an ultrasonic water squirter system without requiring a mechanism for delivering and capturing the constant stream of water.

Fig. 6 shows a photograph of a single-element transducer with a captive water column. The transducer is sealed into a water-tight probe housing. Water is captured in the probe housing with a flexible membrane selected to produce very little ultrasonic reflection. The membrane is pressed directly against the inspection surface and mechanically scanned. Usually, a mist of water is required to wet the surfaces and promote ultrasonic coupling. A large area, high speed, computer controlled scanning system allows for automated inspections of large specimens. Scanning speeds are a maximum of 2 m/s (typical scan speed are 0.3 – 0.6 m/s) with full waveform capture (16-bit) of the ultrasonic signal every 0.25mm.

Fig. 7 shows an example of pulse-echo C-scan results from the inspection of a large composite specimen, approximately 2.4 m x 2.4 m in size. The test article is a composite sandwich structure with 6-ply graphite/epoxy face sheets and an aluminum honeycomb core. The inset image is a close up, high resolution scan of a delamination between the face sheet and the core. Total acquisition time for the captive water column ultrasonic inspection was approximately 45 minutes per side.
Computational NDE

Simulation tools have the potential to create a cost-effective method for developing and optimizing damage characterization techniques for composites. Such tools enable a method for predicting inspectability of advanced composite components during the design stage. For example, simulation tools could be used to establish confidence in an NDE technique’s ability to inspect complex joints, hard to reach locations, characterize complex damage and/or to inspect large areas [14].

To demonstrate the capability of simulating complex damage in a composite material, a 26-ply quasi-isotropic IM7/8552 composite laminate coupon was fabricated at NASA Langley to be used for the purpose of growing enclosed impact-like delamination damage. The composite coupon is 152 mm by 65 mm by 3.23 mm. Details of the damage growth setup can be found in a prior paper by Rogge and Leckey [15]. The damaged sample was scanned at a resolution of 23.4 μm using microfocus x-ray computed tomography (microCT). Fig. 6a shows the microCT results scaled such that only the delamination is visible. The interaction of guided ultrasonic waves with the delamination damage defined by the microCT was then modeled using custom developed 3D anisotropic elastodynamic finite integration technique (EFIT) software [16]. For straightforward one-to-one mapping of the damage into the simulation, and to capture all details of the delamination damage, the EFIT simulation used a step size that is equal to the microCT data resolution (23.4 μm). Fig. 6b shows a 2D representation of a through-thickness slice from the EFIT simulation results at four different time steps and demonstrates that the complex geometry of the damage must be taken into account in order to capture the scattering and mode conversion that occurs as guided waves interact with the delaminated region. Modeling such a complex delamination as a simple circular void would not accurately capture this behavior. Analysis of the simulation results has led to an approach for the detection of hidden multilayer delaminations [17].
Finally, these simulation tools can also be used to develop new rapid and quantitative methods to analyze NDE data. For example, PCA has been used extensively for the reduction of flash IR thermography data. Typical application of PCA to the reduction of transient thermographic data consists of calculating the principal components of the temporal data through singular value decomposition (SVD) of the experimental data itself. For example, Rajic [18, 19] and Valluzzi [20] both use PCA as a contrast enhancement technique for defect detection. Genest [21] and Vavilov [22] provide comparisons between PCA and various other data reduction techniques for defect sizing. Zalameda [23] discusses PCA’s use for temporal compression of the thermal data. PCA was used to analyze thermal “flying-spot” data by Hermosilla-Lara [24] for detection of open cracks in metallic specimens. Finally, Marinetti [25] suggests the use of an experimentally derived training set to calculate the principal components.

While this technique is quite effective in reducing thermal data, the singular value decomposition require for PCA can be computationally intense especially with large three-dimensional arrays of thermal data typically produced during an inspection. Additionally, PCA can experience problems when very large defects are present (defects that dominate the field-of-view). The first vector accounts for as much of the variability in the data as possible therefore if defective material dominates the field of view, the first eigenvector may reflect the response of the defect, not the “good” material. If material responses captured by the first eigenvector are considered to be nominal material response, this results in a misclassification of the defect region. To increase the processing speed and eliminate issues arising from the presence of large defects, an alternative method of PCA is being pursued where a fixed set of eigenvectors, generated from an analytic model of the thermal response of the material under examination, is used to process the thermal data from composite materials. Either a one-dimensional (1D) multilayer analytic model or a 2D finite element model is used and a set of eigenvectors are then numerically generated from this array of responses [7, 8]. Figure 2, discussed earlier, shows the results achieved using this model based analysis approach. In this example, calculation of each PCA image (each mosaic of figure 2 contains 10 images) using the model derived eigenvectors took less than 1 sec. in Matlab®, whereas a full SVD calculation of the eigenvectors and back projection on the same data can take more than 1 min.

4 Conclusions

This paper presented a review of ongoing NDE inspection research and simulation tool development within the NASA’s NESB at Langley Research Center. The paper gave an overview of a few of the technologies under development for rapid, large-area inspection of complex composite structures. Examples were given of how those technologies are being applied to characterize the state of composite structures. The rapid, quantitative results produced by these technologies provide one step in the process of sustainment for large composite structures during a vehicle’s life. Additionally, a discussion of the potential impact of realistic simulation tools for NDE was presented, including examples incorporating realistic composite damage and model based data analysis for faster, more reliable results. A number of other techniques are also being explored by NESB for sustainment of composite structures which were not discussed in this paper. For example current research includes the use of fiber optic, wireless surface acoustic wave and acoustic emission sensors for structural health monitoring (SHM) of large composite components, eddy current inspection of high temperature ceramic composites as well as terahertz and microwave inspection of non-conducting composite materials. Finally, NESB is investigating how data from multiple NDE and/or SHM techniques applied to the same structure could be combined to provide a fuller understanding of the overall health of component under inspection.
5 Acknowledgements

The author would like to thank the following members of the Nondestructive Evaluation Sciences Branch for their contributions to this paper: Patricia Howell, Patrick Johnston, Cara Leckey, Jeffery Seebo and Joseph Zalameda.

References


Copyright Statement

This is a work of the United States Government and is not subject to copyright.

Contact Author Email Address

Mail to: k.elliott.cramer@nasa.gov