
 

 

Plasticity Tool for Predicting Shear 

Nonlinearity of Unidirectional Laminates 

under Multiaxial Loading 

John T. Wang and Geoffrey F. Bomarito  

 

 

 

 

ABSTRACT 

 This study implements a plasticity tool to predict the nonlinear shear behavior of 

unidirectional composite laminates under multiaxial loadings, with an intent to 

further develop the tool for use in composite progressive damage analysis. The steps 

for developing the plasticity tool include establishing a general quadratic yield 

function, deriving the incremental elasto-plastic stress-strain relations using the yield 

function with associated flow rule, and integrating the elasto-plastic stress-strain 

relations with a modified Euler method and a substepping scheme.  Micromechanics 

analyses are performed to obtain normal and shear stress-strain curves that are used 

in determining the plasticity parameters of the yield function. By analyzing a 

micromechanics model, a virtual testing approach is used to replace costly 

experimental tests for obtaining stress-strain responses of composites under various 

loadings. The predicted elastic moduli and Poisson’s ratios are in good agreement 

with experimental data. The substepping scheme for integrating the elasto-plastic 

stress-strain relations is suitable for working with displacement-based finite element 

codes. An illustration problem is solved to show that the plasticity tool can predict 

the nonlinear shear behavior for a unidirectional laminate subjected to multiaxial 

loadings.  

 

INTRODUCTION 

 Unidirectional laminates contain very stiff fibers and a compliant matrix, and they 

behave nonlinearly when the matrix is significantly loaded, such as under transverse 

and shear loadings. Plasticity models have been found to be useful for predicting the 

nonlinear behavior [1-6]. The one-parameter plasticity model developed by Sun et al. 

[1] is particularly appealing, because of its simplicity and accuracy in predicting the 

nonlinear stress-strain relationships for two dimensional (2D) plane stress problems. 

Three dimensional (3D) plasticity models for composites have also been developed. 

Xie and Adams [2] developed a 3D orthotropic plasticity model for modeling  

_______________ 
Durability, Damage Tolerance & Reliability Branch, Research and Technology Directorate, 

NASA Langley Research Center, Hampton, VA 23681, USA 



 

 

unidirectional composite materials. Chen et al. [3] developed a quadratic yield 

function for fiber-reinforced composites which relaxes two commonly used 

assumptions: that hydrostatic stresses do not influence the plastic deformation, and 

the total plastic dilatation is incompressible. Recently, Goldberg et al. [5-6] 

developed an orthotropic plasticity model in which both plasticity and damage can 

be incorporated.   

 Shear nonlinearities can have significant effects on composite structural 

responses and strengths [7-13]. For example, Wang et al. [7] found that shear 

nonlinearity can reduce buckling loads by 57% for composite cylindrical shells. The 

shear nonlinearities need to be properly modeled for accurate structural loading 

responses and strength predictions. Many researchers have attempted to include shear 

nonlinearity in analytical models in order to obtain more accurate strength predictions 

[8-13]. However, most commercial codes for progressive damage analysis (PDA) 

assume linear shear stress-strain relations.  

 The objective of this study is to implement a plasticity tool for predicting the 

nonlinear shear behavior of unidirectional composite laminates under multiaxial 

loadings. The steps for developing the plasticity tool include establishing a general 

quadratic yield function [3, 14], deriving the incremental elasto-plastic stress-strain 

relations using the yield function with an associated flow rule [15-16], and integrating 

the elasto-plastic stress-strain relations for predicting the shear nonlinearity of 

unidirectional laminates under multiaxial loads [17-19].  To establish the general 

quadratic yield function [3], stress-strain curves of unidirectional laminates under 

various loading conditions are needed. In this study, a micro-mechanics based 3D 

representative volume element (RVE) is developed and analyzed with various 

loading conditions [20] to generate these stress-strain curves. The stress-strain curves 

obtained by the RVE analyses are used to determine the plasticity parameters of the 

yield function [3, 5-6]. A substepping scheme [17-19], based on the well-known 

modified Euler method, is used in this study for integrating the elasto-plastic stress-

strain relations. The substepping scheme is suitable for use with finite element 

plasticity calculations that solve for the stress increments, assuming the strain 

increments are known. The implemented scheme is applicable to any general type of 

constitutive law and can control the error in the integration process by adjusting the 

size of each substep automatically [19]. At the end of the paper, an illustration 

problem is solved to show that the plasticity tool can predict the nonlinear shear 

behavior for a unidirectional laminate subjected to multiaxial loadings. 

 

 

PLASTICITY TOOL 

 

 A plasticity tool for predicting the nonlinear behavior of a unidirectional laminate 

under multiaxial loading is presented. The plasticity tool uses a generalized, 

quadratic, orthotropic yield function proposed by Chen et al. [3]. The associated flow 

rule [15, 16] is used to derive the incremental elasto-plastic stress-strain relations. A 

micro-mechanics based 3D representative volume element (RVE) is developed and 

analyzed with various loading conditions [20] to generate the stress-strain curves of 

a unidirectional laminate under various loading conditions. These stress-strain curves 



 

 

are then used for determining the plasticity parameters of the yield function [3, 5-6].  

Finally, the incremental elasto-plastic stress-strain relations are integrated to predict 

the nonlinear behavior of unidirectional laminates under multiaxial loading.  

 

Yield Function and Elasto-plastic Stress-strain Relations 

 

 A generalized, quadratic, orthotropic yield function proposed by Chen et al. [3] 

is used in this study, 
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where the stresses ij  refer to the principal material directions [21], and k  is a state 

variable representing the hardening parameter. The yield function contains nine 

plasticity parameters ,ija which describe the amount of anisotropy in the plasticity. 

The nine plasticity parameters are assumed to be constants.  

 The yield function (Eq. 1) can be reduced to Hill’s orthotropic yield function [14] 

when  
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Using the associated flow rule [15-16], the incremental plastic strains p

ijd  can be 

written as  
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in which p  denotes plasticity, and d  is a scalar plastic multiplier. Equation 3 can 

be explicitly expressed as  
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Note that p

ijd  denotes engineering shear strains and p

ijd  denotes tensorial shear 

strains.  Define plastic Poisson’s ratios (PPRs) as  
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for unidirectional loading in the i -direction. If all ija  in Eq. 1 are constants, the 

following relationships can be obtained 
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The values of 44 55, ,a a and 66 ,a  are defined based on the effective stress and effective 

plastic strain curve that is established for the unidirectional laminate as follows: 

 

Let the effective stress be defined as  
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From Eqs. 1 and 7, the hardening parameter is  
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Using the concept of plastic work [14], the stresses and the incremental plastic strains 

can be related to the effective stress and the incremental effective plastic strain 
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Note that the increment of plastic work is per unit volume. From Eqs. 1, 4, and 9, the 

incremental effective plastic strain can be expressed as  
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Multiplying Eq. 10 by pd  and using Eqs. 1 and 9, one can obtain 
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Substituting Eq. 1 into Eq. 11 and with the inversion of Eq. 4 for ij , Eq. 11 can be 

explicitly expressed as  
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where  
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Using Ref. 3, the  pvs   relationship for each of the three normal and shear loadings 

can be obtained from Eqs. 1, 7, and 12.  For normal loading ii , the effective stress 

is  
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and the incremental effective plastic strain is 
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For shear loading ij , the effective stress is  
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where 44, 55, or 66,rr   depending upon the shear stress components. 

The incremental effective plastic strain for the shear loading is 
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 For isotropic hardening, the yield surface is convex and the plastic strain 

increment is normal to the yield surface; the effective strain grows whenever the 

material is actively yielding and the effective plastic stress increases. If the 

unidirectional composite is undergoing isotropic hardening, a master pvs   curve 

can be established from any of the three normal and shear stress-strain curves. The 

  

 



 

 

 

Figure 1.  Representative volume element. 

 

 

master curve is a universal function relating the effective stresses to the effective 

plastic strain for any loading conditions [15], including multiaxial loadings. In this 

study, the stress-strain curve for a normal loading in the 2-direction (see coordinate 

system in Fig. 1) is used to define the master curve, setting 22 1.0a   in Eqs. 15 and 

16.  As the master curve is determined, the values of 11 33 44 55, , , ,a a a a  and 66a  can be 

specified by trial and error optimization to bring other curves into coincidence with 

the master pvs  curve. Note that the values of 11 22, ,a a and 33a  can also be obtained 

by using Eq. 6. Readers interested in the details of how to obtain these plasticity 

parameters are referred to Refs. 2 and 3. 

 Once the master pvs   curve is established, Eq. 10 can be used to write the scalar 

plastic multiplier d  as 
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where / p

pH d d   is the slope of the master curve. 

 In the classical theory of plasticity [15-16], the incremental total strain is 

decomposed into the elastic part  ed  and plastic part  pd  as 

     e pd d d    .                                                              (20) 
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The explicit forms of   d ,  ed  and  pd  are 
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The superscript T denotes a vector transpose. The elastic strain increments are defined 

as   
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where eS    is the elastic compliance matrix [21], and  d  is the incremental stress 

vector. The plastic strain increments are defined as 
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where pS    is the plastic compliance matrix which can be expressed as [3] 
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Note that in the expression for iC , the subscript i  is defined as : 1=11,  2=22,  3=33,  

4=23, 5=31, and 6=12. The elasto-plastic stress-strain equation, which relates the 

stress increments to the total strain, is 
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where the elastic-plastic stiffness matrix epD    is  
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A substepping scheme which is used to integrate Eq. 25 will be presented in detail 

later. 

 

Micromechanics Model 

 

 In this study, a virtual testing approach is used to obtain the stress-strain curves 

for a unidirectional graphite/epoxy laminate by analyzing a RVE subjected to axial 



 

 

(normal) and shear loadings, using Abaqus/Standard [22]. This RVE is a 

micromechanics model that has fiber and matrix modeled explicitly to represent the 

correct geometries, distinct material properties, and correct fiber volume fraction. 

The RVE model is shown in Fig. 1. Its dimensions are 0.001524 mm in the 1-

direction, and 0.008207 mm in both 2- and 3- directions, and the fiber volume fraction 

is 62%.  Periodic boundary conditions, which were found to be appropriate by Sun 

and Vaidya [20], are used for all the RVE analyses. The material modeled in this 

study is graphite/epoxy IM7/977-3. The fiber is modeled as a linear-elastic material 

and its properties [12] are listed in Table 1. The matrix is modeled with J2-plasticity 

and the effective-stress versus effective-plastic-strain curve of the matrix, shown in 

Fig. 2, is obtained from Ref. 12. The loading conditions applied include normal 

tensile loads in the 1- and 2- directions, transverse shear load, and longitudinal shear 

load. The loading directions and the appropriate boundary conditions for each loading 

case can be found in Ref. 20. The average (homogenized) stress and strain of the 

RVE may be obtained from 

 

 

 

Figure 2.  Effective stress and effective plastic strain of matrix obtained 

 from Ref. 12.  
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and  
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 Alternatively, the average stress can be computed from the reaction forces, and 

the average strain can be computed from the surface displacements of the RVE by 

using Gauss’s theorem. Abaqus [22] analyses were performed to obtain the reaction 

forces and surface displacements for each loading case. The average stress and 

average strain curves are used to establish the plasticity yield function. These 

averaged stress-strain curves are plotted in Figs. 3-6. Fig. 3 is the curve for tensile 

loading in the 1-direction ( 1 1vs  ); Fig. 4 is the curve for tensile loading in the 2-

direction ( 2 2vs  ); Fig. 5 is the curve for the transverse shear loading ( 23 23vs  ); 

and Fig. 6 is the curve for the shear loading in the 1-2 plane ( 12 12vs  ). Note that 22  

and 33  are also plotted in Figs. 3 and 4, so their plastic strains can be evaluated for 

computing PPRs (see Eq. 5).  It is assumed the 3 3vs   curve is the same as the 

2 2vs   curve and the 13 13vs   curve is the same as the 12 12vs   curve, due to 

transverse isotropy. Table 2 shows that the elastic moduli predicted by the 

micromechanics analysis (MMA) have good agreement with published data [23].  

 

 

TABLE 1. IM7 FIBER PROPERTIES [12] 

1( )E GPa  256 

2 3, ( )E E GPa  16 

12 13, ( )G G GPa  15 

23( )G GPa  6.3 

12 13,   0.31 

23  0.28 

 

 

TABLE 2. IM7/977-3 UNIDIRECTIONAL LAMINATE MATERIAL 

PROPERTIES  

 Test [23] Micromechanics Analysis 

Prediction 

1( )E GPa   164 160 

2 3, ( )E E GPa  8.98 9.44 

12 13, ( )G G GPa   5.02 4.15 

23( )G GPa   3.0 3.69 

12 13,    0.32 0.34 

23   0.496 0.5 



 

 

Figure 3. Stress-strain curve for tensile loading in fiber direction. 

Figure 4. Stress-strain curve for tensile loading in transverse direction (2-direction). 



 

 

Figure 5. Stress-strain curve for transverse shear loading. 

 

 

Figure 6. Stress-strain curve for shear loading in the 1-2 plane. 



 

 

Determination of Plasticity Parameters 

 

 The values of the nine plasticity parameters in Eq. 1 can be determined through 

optimization [2]. They can also be defined by using the PPRs defined in Eq. 5. The 

plastic strains used for computing the PPRs can be determined from the stress-strain 

curves obtained by the uniaxial tension analyses of the RVE model [3].  Once the 

PPRs are determined, the plasticity parameters ( 11 33 12 23, , , ,a a a a  and 13a ) can be 

obtained by Eq. 6. Since transverse isotropy is assumed, this results in 
12 13

p p  , 

23 32

p p  , and 
21 31

p p  . The values of 44a , 55a , and 66a can be determined using the 

master pvs  curve. The procedures used by Ref. 3 are adopted for obtaining the 

plasticity parameters in this study. The determined plasticity parameters are given as 

follows:  
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It can be proven that the yield function with the above plastic parameters is always 

non-negative and the shape of the yield surface remains the same in hardening [3]. 

Using these plasticity parameters with Eqs. 15 to 18, all normal and shear stress-

strain curves can be collapsed onto the master curve, as shown in Fig. 7.  

 

 

Figure 7.  Master effective stress-effective plastic strain curve. 



 

 

Integration of Elasto-plastic Stress-strain Relations 

 

 The substepping scheme developed by Sloan [19] is implemented in this study 

for numerical integration of the incremental elasto-plastic stress-strain relations, Eq. 

25. This scheme was originally developed to work with the displacement controlled 

finite element method for analyzing elasto-plastic solids. Using displacement 

controlled loading, the stresses and strains are computed at element integration points 

for each stage of the solution. If the stresses at an integration point cause plastic 

yielding, the elastoplastic stress-strain relations, Eq. 25, are solved. The first-order 

Euler scheme is often used in finite element codes (see Refs. 17 and 18). Since the 

Euler scheme is accurate only for very small time steps, the finite element analysis 

time step, t ,  must be divided into smaller substeps. Traditionally, the number of 

substeps is determined from an empirical rule and all substeps are assumed to have 

the same size. This approach may result in computed stresses that do not satisfy the 

yield function at the end of each analysis time step, t , and the stresses must be 

restored to the yield surface. In this paper, the modified Euler scheme implemented 

by Sloan is used for solving incremental stresses for known incremental strains. This 

scheme does not require stress correction, and also has the ability to control the error 

in the integration of the elasto-plastic equations.  

 

 

Figure 8. Stress-strain curves for unidirectional laminate subjected to transverse 

load and in-plane shear, increase of transverse tension stress reducing 

shear stress is predicted by both MMA and the plasticity tool. 



 

 

INTERACTION OF MULTIAXIAL STRESSES  

 

 The plasticity tool implemented in this study is used to predict the nonlinear shear 

behavior of a unidirectional laminate subjected to multiaxial loadings. The problem 

solved is similar to the study on the effect of transverse stress on shear stress-strain 

behavior investigated by Huang and Liechti [4]. In this study, a unidirectional 

laminate, shown in Fig. 8, is subjected to multiaxial loading: transverse tensile load 

and in-plane shear loads. It is found, via integration of Eq. 25, that at a constant shear 

strain level, an increase in transverse tensile stress can reduce shear stress. This 

finding agrees with that presented in Ref 4. The effect of transverse tensile stress on 

the shear stress shown in Fig. 8 cannot be predicted with a linear elastic analysis.  

 The results obtained from MMA of the RVE with boundary conditions chosen to 

produce the same ratios of 22 12/   are also shown in Fig. 8. Note that the periodic 

boundary conditions of the RVE were not used here, since they allow deformations 

in all directions, which can result in a more flexible model than the one considered 

here. These MMA results reveal the same trend, at a constant shear strain level, 

namely an increase in transverse tensile stress, expressed as 22 12/  , can reduce shear 

stress. The shear stresses predicted by the MMA have good agreement with the 

predictions of the plasticity tool. For the case of 22 12/ 1,     the shear stresses are 

under-predicted by the plasticity tool at strain levels above 2.5%.  However, at that 

high transverse strain level, discrete matrix cracks may have occurred. Since 

modeling failure is not in the scope of the current study, data for transverse strain 

levels above 2.5% shown in Fig. 8 may be invalid.  

 

 

CONCLUDING REMARKS 
 

 This study implemented a plasticity tool to predict the nonlinear shear behavior 

of unidirectional composite laminates with an intent to further develop the tool for 

use in composite PDA. The steps for developing the plasticity tool include 

establishing a yield function, deriving the incremental elasto-plastic stress-strain 

relations using the yield function with an associated flow rule, and integrating the 

elasto-plastic stress-strain relations to predict the shear nonlinearity of unidirectional 

laminates under multiaxial loads. A substepping scheme was used to integrate the 

elasto-plastic stress-strain relations. This scheme is suitable for displacement-based 

finite element codes; thus it can be incorporated with commercial finite element 

codes for laminated composite analyses.  

 In this study, micromechanics analyses were performed to obtain normal and 

shear stress-strain curves for determining the plasticity parameters of the yield 

function. This virtual testing approach can be used to replace the costly experimental 

tests for obtaining stress-strain responses of composites under various loading 

conditions. The predicted elastic moduli and Poisson’s ratios are in good agreement 

with experimental data. 

 The plasticity tool implemented in this study was used to predict the nonlinear 

shear behavior of a unidirectional laminate subjected to multiaxial loadings. A 

unidirectional laminate was subjected to transverse load and in-plane shear loadings. 

It was found that at a constant shear strain level, increasing transverse tensile stress 



 

 

can reduce the shear stress. This transverse tensile stress effect on the shear stress, 

which agrees with published findings [4], cannot be predicted with linear elastic 

analysis. 
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