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ABSTRACT 

 
A new methodology is proposed to model the onset and propagation of matrix 

cracks and delaminations in carbon-epoxy composites subject to fatigue loading. An 
extended interface element, based on the Floating Node Method, is developed to 
represent delaminations and matrix cracks explicitly in a mesh independent fashion. 
Crack propagation is determined using an element-based Virtual Crack Closure 
Technique approach to determine mixed-mode energy release rates, and the Paris-Law 
relationship to obtain crack growth rate. Crack onset is determined using a stress-
based onset criterion coupled with a stress vs. cycle curve and Palmgren-Miner rule to 
account for fatigue damage accumulation. The approach is implemented in 
Abaqus/Standard® via the user subroutine functionality. Verification exercises are 
performed to assess the accuracy and correct implementation of the approach. Finally, 
it was demonstrated that this approach captured the differences in failure morphology 
in fatigue for two laminates of identical stiffness, but with layups containing θ° plies 
that were either stacked in a single group, or  distributed through the laminate 
thickness. 

 
 

INTRODUCTION 
 
Fatigue damage in composite materials generally results in a combination of 

multiple delaminations and matrix cracks. These damage mechanisms are not 
isolated and often interact, forming complex damage patterns. Few approaches 
attempt to model these damage modes and their interaction explicitly in fatigue [1, 

                                                
Nelson V. De Carvalho, R. Krueger, National Institute of Aerospace, 100 Exploration Way, 
Hampton, VA, 23666. This work was performed at the Durability, Damage Tolerance and 
Reliability Branch, MS 188E, NASA Langley Research Center, Hampton, VA, 23681, U.S.A. 

 



2]. In [1], both delamination and matrix crack onset are modeled using stress-based 
criteria and ad-hoc stiffness degradation. Such an approach is mesh-subjective, 
limiting its applicability as a predictive tool. In [2], both matrix cracks and 
delamination are modeled with a fatigue cohesive element approach, rendering an 
approach that can be mesh-objective. Matrix cracks are represented using the 
regularized Extended Finite Element Method (rXFEM), and delaminations are 
represented through interface elements. Both damage onset and propagation for 
matrix cracks and delaminations are modeled through a fatigue cohesive approach 
[2].  

The Floating Node Method (FNM) has been proposed in [3] to represent 
multiple discontinuities in solids in a mesh independent fashion. The method 
provides a single approach to model both damage mechanisms (matrix cracks and 
delamination) and their interaction. Furthermore, one of its main advantages is the 
simplicity with which multiple cracks and their interaction can be accommodated 
explicitly within an element.  

In the present work, a three-dimensional (3D) extended interface element, based 
on the FNM, is proposed and combined with an element-based implementation of 
the Virtual Crack Closure Technique (VCCT) [4] and an onset criterion. The 
resultant approach is capable of simulating both fatigue damage onset and 
propagation. In the first section, an overview of the 3D interface element is 
provided. Subsequently, a description of the element-based VCCT technique and 
how it is used to propagate both matrix cracks and delaminations is given. 
Afterwards, the procedure used to determine matrix cracks and delamination onset 
in fatigue using a stress-based approach while assuming Linear Elastic Fracture 
Mechanics (LEFM) is described. Two sets of verification exercises for matrix 
cracks and delaminations are performed to assess accuracy and implementation of 
the approach being proposed. Finally, the approach is demonstrated by simulating 
crack onset and accumulation in fatigue in cross-ply laminates with different 
stacking sequences. 

 
 

3D CRACK REPRESENTATION IN COMPOSITES USING THE FLOATING 
NODE METHOD: EXTENDED INTERFACE ELEMENT 

 
In the present work, the FNM [3] was used to develop a 3D extended interface 

element as shown in Figure 1. This element is used to model an interface and the plies 
immediately above and below that interface via sub-elements 1 and 2. The plies 
modeled with sub-elements 1 and 2 can have the same or different orientations and 
thicknesses. Formulated in this fashion, the extended interface element provides 
access to the stress state at the interface and within the plies immediately above/below 
(Figure 1a). Additionally, it enables resolution of the kinematics of multiple crack 
interaction (delamination/matrix crack) within a single element. Each sub-element can 
be divided along any vertical plane to represent matrix cracks of any orientation 
(Figure 1b). In addition to 16 real nodes, the element has a total of 32 floating nodes, 
which are used as required to represent discontinuities, or are otherwise condensed out 
of the system of equations. After the initial partitioning, the sub-elements can be 
further sub-divided as needed for integration purposes. This is illustrated in Figure 1b, 
sub-element 2, where the green lines represent further subdivisions needed for 



integration. No limits to the number of cracks are imposed. Crack spacing is only 
limited by the assumption that each sub-element can only represent one matrix crack. 

 

 
a) extended interface element comprised of two 

sub-elements 

 
b) representation of matrix cracks with different 

orientations 
Figure 1. Extended interface element with interface and matrix crack representation. 
 
 

DELAMINATION AND MATRIX CRACK PROPAGATION  
 
Matrix cracks and delaminations are represented with the FNM and the extended 

interface element summarized above. To determine crack propagation, an element-
based VCCT technique is proposed and will be detailed in the next section. 

 
Element-based Virtual Crack Closure Technique (VCCT) 

 
In the element-based VCCT, the shape functions of interface elements are used to 

obtain tractions and displacements at integration points. The tractions and 
displacements are then used to compute energy release rates for the elements at the 
crack front. The same methodology is applied for both matrix cracks and 
delaminations, as illustrated in Figures 2a and 2b. Figure 2c shows a planar view of a 
crack front (matrix crack or delamination). For each pair of elements 𝑒!, 𝑒! , where 
𝑒! designates elements adjacent to 𝑒!, energy release rates can be computed in opening 
mode and shear mode using VCCT as: 
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where 𝑠 and 𝑡 designate two in-plane orthogonal directions and n is the normal to that 
plane, as shown in Figure 2c. In equations 1 to 3, 𝐴! corresponds to the area of each 
integration point i, 𝐴!! to the area of the element 𝑒!, and I is the total number of 
integration points. The normal traction 𝜎!

!!,! , and shear tractions   𝜏!
!!,! , 𝜏!

!!,!  are 
computed at the integration points of element 𝑒!; and the openings, 𝛿!

!!,!, 𝛿!
!!,!, 𝛿!

!!,!, 
are obtained at equivalent positions of elements 𝑒! (Figure 2c). The contributions from 
each integration point pair are summed to obtain the energy releases for each pair of 
elements. The maximum energy release rate for a pair of elements 𝑒!, 𝑒!  is 
determined as: 
 

𝐺!"#
!!!!! = 𝐺!

!!!!! + 𝐺!
!!!!! + 𝐺!

!!!!! (4) 
 
The maximum energy release for the element 𝑒!, 𝐺!"#

!! , is assumed to be the 
maximum 𝐺!"#

!!!!! obtained with the four pairs 𝑒!, 𝑒! : 
 

𝐺!"#
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Once the maximum is determined, the adjacent element 𝑒!∗, associated with the 
maximum value, is identified. It is then possible to determine the mode-mixity, 𝛽!!, 
as:  
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𝐺!
!!!!!

∗
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!!!!!

∗

𝐺!"#
!!  

(6) 

 
and the characteristic length, 𝑙!!, corresponding to the length of the common edge 
between 𝑒! and 𝑒!∗ (see Figure 2 where 𝑒!∗ = 𝑒! is assumed). The characteristic length, 
𝑙!!, is used in the calculation of the cycles needed for a given element to open, as 
detailed in the following section. 

 

  
a) delamination b) matrix crack 

 
c) crack plane view. The solid circles represent integration points in each element. 

Figure 2. Element-based VCCT applied to both delaminations and matrix cracks. 
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Propagation delamination and matrix cracks 
 
Delaminations and matrix cracks are assumed to propagate following the Paris 

Law [5] given by: 
 

d𝑎
d𝑁 = 𝑐 𝐺!"# ! (7) 

 
where 𝐺!"# corresponds to the maximum energy release rate obtained at peak load, 𝑎 
designates the crack length and 𝑁 the cycles. The coefficient 𝑐 and exponent 𝑛 are 
assumed to be a piece-wise linear function of the mode-mixity. At a given step 𝑠, the 
energy release rate, mode-mixity, and the growth rate are determined for each element 
𝑒! at the crack front. A binary failed/not failed approach is implemented. The un-
cracked area 𝐴!"

!!  is used as an internal state variable that tracks crack accumulation for 
the elements at the crack front that do not fail in a given step. An element is 
considered to fail if its un-cracked area 𝐴!"

!!  is reduced below a fraction 𝑓   of the 
original area: 

 
𝐴!"
!!

!!!
< 𝑓𝐴!! (8) 

 
Otherwise the element is considered to be pristine. In the present study, 𝑓 = 0.1, 
which assumes an element fails if the un-cracked area is less than 10% of the original 
area. Hence, before damage: 

𝐴!"
!! = 𝐴!! (9) 

 
where 𝐴!! corresponds to the area of the element. The cycles needed to fail each 
element at the crack front, at step 𝑠, can be obtained as: 
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in which length 𝑙!! is the characteristic length associated with element 𝑒!. The values 
of all ∆𝑁!! are afterwards used to determine the cycle increment in the step, ∆𝑁!"#, 
which is assumed to be the minimum number of cycles needed to fail an element or 
initiate a new crack. Knowing the cycle increment and the growth rate, the crack 
increment,   ∆𝐴!!, can be calculated: 

 

  ∆𝐴!! = 𝑙!!
d𝑎
d𝑁

!!
∆𝑁!"# (11) 

 
and an updated un-cracked area obtained as: 

 
𝐴!"
!!

!!!
= 𝐴!"

!!
!
− ∆𝐴!! (12) 

  



DELAMINATION AND MATRIX CRACK ONSET 
 
In the present work, a stress-based criterion is used to determine fatigue damage 

onset. The definition of a propagation zone, where the stress criterion is not active, 
enables the combination of a stress-based criterion for fatigue crack onset with the 
procedure detailed above for modeling crack growth. The definition of the propagation 
zone, the onset criterion, and their implementation are discussed in the subsequent 
sections. 

 
Damage onset 

 
The onset of delaminations and matrix cracks is determined by comparing a 

maximum principal stress criterion to an assumed stress vs. cycle (S-N) curve and 
using the Palmgren-Miner rule [6] to account for fatigue damage accumulation not 
leading to onset. 

 
MAXIMUM PRINCINPAL STRESS CRITERION 
 

For delamination, the maximum (positive) principal stress, 𝜎!!"#, is computed in 
the delamination plane: 
 

𝜎!!"# =
𝜎!
2 +

𝜎!
2

!
+ 𝜏!! + 𝜏!! 

(13) 

 
in which 𝜎!, 𝜏! and 𝜏! are, respectively, the opening and the two orthogonal shear 
tractions acting in the delamination plane. Once onset is determined in a given 
element, the elements immediately adjacent are also considered to have failed, 
enabling the calculation of energy release rates via VCCT, following the procedure 
outlined above. 

For matrix cracks, the maximum principal stress criterion, is written as: 
 

𝜎!! =
𝜎!!
2 +

𝜎!!
2 + 𝜎!"! + 𝜎!"!  

(14) 

 
where direction ‘1’ corresponds to the fiber direction, ‘2’ is orthogonal to ‘1’ in-plane  
and ‘3’ is orthogonal to ‘1’, corresponding to the through-thickness direction. The 
stress components, 𝜎!! and 𝜎!", are assumed to not contribute to the onset of matrix 
cracks. Their effect is accounted for in the delamination onset criterion. The stress in 
the fiber direction, 𝜎!!, is also assumed not to contribute to the onset of matrix cracks. 
Once matrix crack onset is detected in a given element, the crack is assumed to 
propagate through the thickness and to the two adjacent elements along the crack 
direction. This enables the determination of energy release rates via VCCT, and the 
application of the propagation methodology outlined previously. Additionally, local 
delaminations are assumed directly above the failed elements, enabling the initiation 
of local delaminations triggered by matrix cracks.  
  



STRESS VS. CYCLES (S-N) CURVE AND WEIBULL SCALING 
 
Fatigue crack onset in composites is assumed to be reasonably well approximated 

by an onset curve with the form [7]:  
 

𝑆 = 𝑆!(1− 𝛼log 𝑁 ) (15) 
 

where 𝑆! is the static strength, and 𝛼 a parameter determined experimentally. The 
onset of cracks in fatigue is an intrinsically probabilistic event. To capture its 
probabilistic nature, the static strength in Equation 15 is assumed to follow a Weibull 
distribution such that the probability of failure at a given stress 𝑃 𝜎  is given by [8]: 

 

𝑃 𝜎 = 1− 𝑒!
!
!!

!

 (16) 
 

where 𝜎! is the material characteristic strength and 𝑚 is the shape parameter. Both 𝜎! 
and 𝑚 can be determined from experimental data. When perfoming the simulations, 
the distribution is sampled for each element. This procedure inherently leads to a mesh 
dependent solution: the finer the mesh, more sampling will be performed, and hence 
the greater the likelihood of obtaining values at the extremes of the assumed 
distribution. To balance this effect, Weibull scaling is used [8]. Weibull scaling 
provides a relationship between the strength of two volumes of the same material, 
based on the notion that the larger the volume, the more likely it is to have a weak link 
(weakest link assumption). The S-N data used in the present work were obtained using 
a 3-Point-Bending (3PB) configuration [9]. Using Weibull scaling, the characteristic 
strength, 𝜎!!!!", obtained in [9], can be related to the strength of each element, 𝜎!!, in 
a given discretization. Assuming predominantly tensile loading conditions, this 
relation is given by [9]: 

 
𝜎!! =

𝜎!!!!"

2 𝑚 + 1 ! 𝑉!
𝑉!!"

! ! 
(17) 

 
where 𝑉! designates the volume of a given element and 𝑉!!" is the volume of the 3PB 
specimen [9]. However in [9], Weibull scaling alone was not sufficient to account for 
the differences between the strength obtained using a 3PB and a 4-Point-Bending 
(4PB) test setup, despite predicting the trend correctly. Thus, further investigation may 
be needed to assess the accuracy of the procedure outlined above. 

 
PALMGREN-MINER RULE 

 
Fatigue damage accumulation prior to the onset of discrete cracks is obtained by 

the Palmgren-Miner rule [6]: 
 

C ! =
∆𝑁!"# !

𝑁! !

!

!!!

 (18) 

 



where  𝑁! !
 and ∆𝑁!"# ! are, respectively, the number of cycles to failure and the 

number of cycles accumulated at the stress corresponding to the 𝑠!! step. Equation 18 
can also be used to determine the cycles needed to fail an element at a given stress 
level and step 𝑘: 

 
∆𝑁!"#$% ! = 𝑁! !

1.0− 𝐶 !!!  (19) 
 

In the current implementation, ∆𝑁!"#$% ! is computed for all elements at each step. At 
the end of each step, the minimum number of cycles to onset and/or to propagate a 
crack is determined and assumed to equal the cycle increment ∆𝑁!"# !. Finally, all 
elements for which: 

 
∆𝑁!"#$% !
∆𝑁!"#

< 1+ 𝑓 (20) 

 
where 𝑓 = 0.1,  are considered to fail in step 𝑘. 

 
Propagation Zone 

 
Previously, VCCT was used to simulate crack growth from an assumed damage 

state [10]. This methodology assumes LEFM and hence, that stresses tend to infinity 
at the crack front. Consequently, these assumptions prevent use of an approach that 
predicts damage onset using a stress-based failure criterion, since refinement in the 
vicinity of the crack tip would lead to continuously increasing stress, rendering a 
mesh-subjective approach. For sufficient refinement (high stress at the crack tip), 
propagation of a crack would no longer be controlled by a fracture mechanics 
criterion, but always governed by the stress-based onset criterion. Therefore, a zone of 
length 𝑙!! must be defined, within which the onset criterion is not activated. 

For further clarification, let us first assume predominantly Mode I loading. The 
stresses ahead of a crack tip can be estimated by: 

 

𝜎 𝑥 =
𝐾!
2𝜋𝑥  

+ 𝑂(𝑥) (21) 

 
where 𝐾! is the Mode I stress intensity factor, and 𝑥 the distance from the crack tip 
along the crack path (Figure 3). Assuming plane strain conditions and neglecting 
higher order terms, one can write: 

 

𝜎 𝑥 ≈
𝐺!𝐸
2𝜋𝑥  

 
(22) 

in which 𝐺! is the Mode I energy release rate and 𝐸 the Young’s modulus. 
In fatigue, it is generally possible to assume a threshold stress level, 𝜎!!, below which 
fatigue onset is assumed not to occur within the number of cycles of interest. Using 
Equation 22, it is possible to determine a distance away from the crack tip, 𝑙!!!!, 
associated with Mode I loading, where the stresses caused by the presence of a crack 
decay below 𝜎!!: 



 

𝑙!!!!   ≈
𝐺!𝐸

2𝜋𝜎!!!!!   
 

(23) 

 
The same approximation can be made for Mode II loading. Additionally, if the critical 
energy release rates for Mode I and Mode II are assumed, 𝐺!" and 𝐺!!", a further 
conservative estimate can be obtained: 

 
𝑙!!!!"   ≈

!!"!
!!!!!!!

!   
,  𝑙!!!!!"   ≈

!!!"!
!!!!!!!

!   
 (24) 

 
where the subscripts 𝑛 and 𝑠 designate shear and normal tractions. Finally, the 
maximum distance 𝑙!!, can be approximated by: 

 
𝑙!! = max 𝑙!!!!" , 𝑙!!!!!"  (25) 

 
The distance 𝑙!! can then be used to define an area within which the onset criterion is 
not activated (Figure 3). 
 

 
Figure 3. Definition of the propagation zone, within which the onset criterion is not activated. 

 
 
VERIFICATION 

 
The approach outlined above was implemented in Abaqus/Standard®. The user 

subroutine SDVINI was used to seed the elements with the initial strength values, 
obtained by randomly sampling a Weibull distribution. The extended interface 
element was implemented as a 3D UEL (user element subroutine). In addition, the 
user subroutine UEXTERNALDB was used to interface with an external Python 
script. This script is used to manage the crack insertion and propagation. To verify the 
approach, two sets of verification exercises were performed, the first dedicated to 
matrix cracks, and the second to delaminations. 

  
Matrix Cracks 

 
To assess the accuracy of the energy release rate calculation for matrix cracks, 

numerical results are compared to the analytical solutions for an orthotropic plate with 
a center crack under Mode I and Mode II loading conditions. The elastic properties are 
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assigned such that the fiber direction is aligned with the crack, in a similar fashion to 
what was performed in [11]. Two cases were considered, one corresponding to Mode I 
(Figure 4a), and another to Mode II (Figure 4b). The model is a square plate of 50×50 
mm in-plane and 1 mm thickness. A crack of 5 mm length is assumed to be located at 
the center of the plate. The plate was loaded with applied tractions as illustrated in 
Figure 4. The center region of the specimen was progressively refined to assess the 
accuracy and mesh objectivity of the approach. Numerical results were compared to 
analytical solutions for Mode I [12]: 

 

𝐺! =
𝜎!!𝜋𝑎

4𝐺!"𝐸!𝐸!
! !

2𝐺!"𝐸!
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! ! − 2𝜈!"𝐺!"𝐸!
! !

! ! 
(26) 

 
and Mode II [12]: 

 

𝐺!! =
𝜏!! 𝜋𝑎

4𝐺!"𝐸!!𝐸!
! !

2𝐺!"𝐸!
! ! + 𝐸!𝐸!

! ! − 2𝜈!"𝐺!"𝐸!
! !

! ! 
(27) 

 
energy release rates, where 𝜎!  and 𝜏!  are the normal and shear remote loadings and 
𝑎 is half of the crack length (Figure 4). The variables 𝐸, 𝐺 and 𝜈 are the in-plane 
Young’s modulus, shear modulus and Poisson ratio. The subscripts ‘1’ and ‘2’ refer to 
fiber direction and transverse direction, respectively. 

Figure 4 shows that, for the same refinement, Mode II results have a slightly larger 
error than Mode I. Nevertheless, for both loading modes, the solution is demonstrated 
to converge to the analytical value. 
 
 
 
 
 
 
 
 
 



 
a) Mode I 

 
b) Mode II 

Figure 4. Energy release rate error between numerical and analytical solutions as a function of the 
mesh refinement. 
 
Delaminations 

 
In [13, 14], numerical benchmarks were proposed to assess the accuracy of 

fracture mechanics based approaches to simulate delamination propagation under 
Mode I and Mode II fatigue loading. The numerical models used correspond to 
Double Cantilever Beam (DCB) and End-Notch-Flexure (ENF) specimens. These 
benchmarks were used in the present work to assess the accuracy and correct 
implementation of the approach for delamination propagation. The mesh, material 
properties, and load conditions were prescribed following [13, 14] and for brevity are 
not repeated here. The results obtained are provided in Figure 5, where the maximum 
crack length at each step is plotted against number of cycles and compared to the 
benchmark results [13, 14]. Further mixed-mode cases showing similar acceptable 
agreement, and a detailed comparison to the current Abaqus/Standard® low-cycle 
fatigue capability, are provided in [15]. 
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a) DCB 
 

b) ENF 
Figure 5. Comparison between the numerical results obtained for Mode I (DCB) and Mode II 

(ENF) loadings and the benchmarks provided in [13, 14]. 
 
 

APPLICATION 
 
To demonstrate the adequacy of the approach to capture the onset and 

accumulation of multiple cracks, the experiment proposed in [16] was simulated. In 
[16], two different laminates with the same stiffness were considered. In laminate A, 
[0!,𝟗𝟎, 0!,𝟗𝟎, 0!], the two 90° plies are isolated, while in laminate B, [0!,𝟗𝟎𝟐, 0!], 
they are stacked in the center of the specimen. Specimens with the same dimensions 
were manufactured from the two laminates. The specimens were loaded under 
uniaxial tension-tension fatigue at the same load level, 𝜎!"#, corresponding to 60% of 
the ultimate strength with a 0.1 load ratio and a frequency of 10 Hz. Experimental 
results showed that the damage accumulation in fatigue was markedly different for the 
two layups [16]. Specimens from laminate A exhibited a significantly higher crack 
saturation density than from laminate B. Contrarily, matrix cracks in laminate B grew 
faster and to a greater length than in laminate A. Additionally, the authors highlighted 
the importance of capturing the 3D effects caused by the interaction and shielding of 
cracks growing through the width. Indeed, two-dimensional (2D) analysis would 
assume cracks would traverse the specimens completely. However, this was seldom 
observed experimentally, with cracks arresting before traversing the specimen, due to 
the interaction with other growing cracks. In [16], the material used in the experiments 
was carbon/epoxy T300/914. In the present work, due to a lack of a complete set of 
fatigue material data for T300/914, properties for the carbon-epoxy IM7/8552, which 
has similar elastic properties (~15% difference in 𝐸!!), were assumed instead.  

 
Material properties and input data 
 

In this section, the material properties and input data used in the application 
example are summarized. The elastic properties assumed for IM7/8552 are provided 
in Table I. 
 

TABLE I. ELASTIC PROPERTIES, IM7-8552 [17] 
𝐸!! 𝐸!! = 𝐸!! 𝜈!" = 𝜈!" 𝜈!" 𝐺!" = 𝐺!" 𝐺!" 

161.0   GPa  11.38   GPa  0.32 0.44 5.17 GPa  3.98 GPa  
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In [10], S-N data for the transverse strength of IM7/8552 using 3PB and 4PB tests 
were produced. In the present work, the 3PB results were used, since they required the 
least amount of scaling. A least squares fit of an S-N curve, as given in equation 19, to 
the average of the failure strength obtained for each load level, yielded 𝛼 = 0.071 
with a correlation coefficient of 𝑅! = 0.95. The Weibull characteristic strength, 𝜎!, 
and shape parameter, 𝑚, were also obtained from [10]. The material properties used to 
determine crack onset, together with the assumed threshold value, 𝜎!!, are given in 
Table II. The same S-N curve is used to model both matrix crack (intra-laminar) and 
delamination (inter-laminar) onset. This assumption is a first approximation and can 
be updated as reliable experimental data are obtained. Nevertheless, the equivalence 
between intra-laminar and inter-laminar Mode I critical energy release rate has been 
experimentally demonstrated for IM7-8552 [18]. 

 
TABLE II. MATERIAL PROPERTIES USED TO PREDICT CRACK ONSET IN THE 

PRESENT STUDY 
𝛼 𝜎! MPa [17] 𝑚 [17] 𝜎!! MPa 
0.071 128.95 18.83 60.0 

 
To model crack growth, the growth rate obtained in [19-21] for pure Mode I, 

Mode II and mixed-mode I/II is linearly interpolated to obtain the Paris Law 
coefficient and exponent, 𝑐 and 𝑛, in equation 7. The values used are summarized in 
Table III. 

 
TABLE III. PARIS LAW COEFFICIENT 𝑐 AND EXPONENT 𝑛 AS A FUNCTION OF THE 

MODE-MIXITY 𝛽. NORMALIZED DATA ARE CONSIDERED FOR ALL 𝛽 EXCEPT 𝛽 = 1.0 
 𝛽 = 0 𝛽 = 0.2 𝛽 = 0.5 𝛽 = 0.8 𝛽 = 1.0 
𝑐 173.83 2291.31 6.90 4.29 0.231 
𝑛 6.77 8.38 5.41 5.07 5.45 

 
 
Results 

 
The models used are illustrated in Figure 6. For laminate A, symmetry conditions 

were applied, and only half of the thickness was considered (Figure 6a). For laminate 
B, no symmetry conditions were applied, due to the difficulty in adding boundary 
conditions as damage evolved (note that no pre-defined damage location is assumed) 
(Figure 6b). The two elements near the boundaries where traction is applied were not 
allowed to fail - ‘no failure’ zone. This prevented numerical issues and ensured regular 
load introduction throughout the analysis. In both cases, the lengthwise dimension was 
assumed to be 2.0 + 0.18 mm, where 0.18 is the length of the ‘no failure’ zone. The 
use of a representative region, rather than the full specimen, enables a significant 
reduction in the computational time. For laminate A, FNM elements were used in the 
center of the specimen. Each element modeled half of the ply above and below the 
90/0 interfaces. For laminate B, one additional FNM element was used in the center 
region, modeling half of the ply above and below the mid-plane 90/90 interface. 
Elsewhere in the models, native Abaqus/Standard elements C3D8 (bi-linear, full 
integration) were used. Tensile fatigue loading, 𝜎!"#, was applied corresponding to 
approximately 60% of the ultimate strength, as in [16]. Assuming the 0° plies will 
carry the final failure load, 𝜎!"# was estimated to be: 



 
𝜎!"# = 0.6𝑛!°𝑋! (28) 

 
where 𝑋! = 2560 MPa is the fiber tensile strength of IM7/8552 [22], and 𝑛!° is the 
number of 0° plies in the laminates. Figure 6 also shows the damage state obtained 
after 5×10! cycles. Qualitatively, it is possible to see the marked differences in crack 
density observed at the edges in the two laminates. Laminate A shows a significantly 
higher crack density at the edges of the two specimens compared to B. This is in 
agreement with the experimental observations. Furthermore, in Figure 7, it is also 
clear that not only the crack density differs, but also the average crack length: 
Laminate B shows fewer longer cracks. Once again, this is in agreement with what 
was reported in [16]. Additionally, the crack shielding, also reported in [16], can be 
observed in both laminates. Figure 8 compares the crack density accumulation 
observed experimentally and obtained numerically. The numerical results show 
similar trends to the experimental observations.  In a first stage, Laminate B shows 
higher crack density than A. The cross-over point coincides approximately with the 
saturation density for Laminate B. After this stage, laminate A continues to 
accumulate cycles until saturation is reached. Quantitatively, the simulations show an 
overall higher crack density than that obtained experimentally. Moreover, more cycles 
are needed to obtain saturation. Indeed, saturation was only obtained for laminate A 
after 5×10! cycles (squares with dark outline). However, it is interesting to observe 
that the difference in saturation density between laminates A and B, ∆!"#, is 
approximately the same in both experiments and simulations, despite the differences 
in absolute values of crack density. It is worth recalling that the material simulated is 
not the same material used in the experiments, which may contribute to the 
quantitative differences observed. Nevertheless, the qualitative agreement 
demonstrates that the approach is able to simulate both onset and growth of multiple 
cracks and has the potential to capture the complex fatigue damage development, 
being able to simulate the development of distinct damage patterns in two seemingly 
equivalent laminates.  
 

  
a) laminate A b) laminate B 

Figure 6. Numerical model dimensions and loading. Edge crack density after 𝑁 ≈ 5×10! cycles. 
Laminate A shows a higher number of cracks at the edges (elements in red) compared to Laminate B. 
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a) laminate A 

 
b) laminate B 

Figure 7. Planar view of the 90 ply matrix cracks after 𝑁 ≈ 5×10! cycles. Fewer longer cracks are 
observed in B compared to A. Crack shielding is evident in both specimens. 

 

  
a) Experiments [14] b) Simulations 
Figure 8. Comparison between the observed and predicted crack density. 

 
 

CONCLUSIONS 
 
A new approach is proposed to model damage onset and accumulation in fatigue. 

It uses an extended interface element, based on the FNM method, to represent 
delaminations and matrix cracks. Crack propagation is determined using an element-
based Virtual Crack Closure Technique and a Paris-Law relationship. Crack onset is 
determined using a stress-based onset criterion and Miner’s rule to account for fatigue 
damage accumulation. The approach is implemented in Abaqus/Standard® via the user 
subroutine functionality. Preliminary verification shows good agreement between the 
numerical results obtained and analytical solution/benchmarks. Finally, the approach 
is demonstrated by capturing the experimentally observed differences in damage 
development and morphology between two seemingly equivalent cross-ply laminates, 
involving multiple crack onset and propagation. 
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