Observations of Transient ISS Floating Potential Variations during High Voltage Solar Array Operations

Emily M. Willis, Joseph I. Minow, Linda N. Parker, Maria Z. A. Pour, Charles Swenson, Ken-ichi Nishikawa, Linda Habash Krause
Introduction

• Goal – Determine if observed ISS floating potential transients can be reproduced with current models. Describe the ISS charging process, present transient observations, and show that current models do not reproduce them.

• Method
 • Study the history of solar array charging studies
 • Identify the controlling factors in array induced charging
 • Produce examples of transient charging
 • Describe the current balance model
 • Apply the current balance model to transient conditions
 • Analyze results and suggest future work

• Results
 • Model results

• Conclusion and Forward Work
Outline

• History of solar array charging studies

• Controlling factors in array induced charging

• Examples of transient charging

• Current balance model

• Current balance model applied to transient conditions

• Conclusions and future work

Willis, Minow, Parker, Pour, Swenson, Nishikawa, Krause
AIAA Space 2016
History of Solar Array Interactions Studies

1960s
• Studies of solar array interactions with the space environment initiated.1-3

1970s
• Studies show that interactions with the space environment are highly dependent on array voltage.4-6

1980s
• Space based experiments confirmed the dependence of environment interactions on solar array voltage.7,8

1990s
• Research initiated specific to ISS solar cell interactions with the space environment.9,10

2000s
• Initial ISS probe data received and studied.11-16

2010s
• Solar array induced transients observed.

Willis, Minow, Parker, Pour, Swenson, Nishikawa, Krause
AIAA Space 2016
Spacecraft Charging Induced by High Voltage Solar Arrays

“Vf” is the floating potential of the ISS

Willis, Minow, Parker, Pour, Swenson, Nishikawa, Krause
AIAA Space 2016
Charge Collection through Solar Cell Gaps

plasma electrons

coverglass

Silicon (+160 Volts)

Kapton

coverglass

Silicon (+160 Volts)

coverglass

Silicon (+160 - Vf Volts)

Kapton

coverglass

Silicon (+160 – Vf Volts)
Normal Charging

a) Floating Potential

b) Active Array Strings

c) Array Orientation

d) Plasma Density

e) ISS Latitude

Willis, Minow, Parker, Pour, Swenson, Nishikawa, Krause
AIAA Space 2016
Each of eight arrays unshunted in full sunlight

close-up

Transients

a) Floating Potential

b) Active Array Strings

c) Array Orientation

d) Plasma Density

e) ISS Latitude

Willis, Minow, Parker, Pour, Swenson, Nishikawa, Krause
AIAA Space 2016
Transients

a) Floating Potential

b) Active Array Strings

c) Array Orientation

d) Plasma Density

e) ISS Latitude
Transients

a) Floating Potential

b) Active Array Strings

c) Array Orientation

d) Plasma Density

e) ISS Latitude

Willis, Minow, Parker, Pour, Swenson, Nishikawa, Krause
AIAA Space 2016
Spacecraft will float to a potential \((V_f) \) such that the net current collected is zero\(^{17}\)

\[
0 = \sum_{j} I_j
\]
Current Balance Model for Rapid Charging14-16

Model output agrees well with FPMU data.
Model output does not reproduce FPMU data.

Willis, Minow, Parker, Pour, Swenson, Nishikawa, Krause
AIAA Space 2016
Conclusions and Future Work

• Floating potential transients attributed to solar array operations have been observed in ISS FPMU data.

• These transients are not reproduced by current balance models.

• Future work: research focused on the time dependent nature of the screening effect and its effect on electron collection to solar arrays.
References

