Augmenting Conceptual Design Trajectory Tradespace Exploration with Graph Theory

AIAA Space 2016

Patrick D. Dees, Mathew R. Zwack
Jacobs ESSSA Group

Stephen Edwards, Michael Steffens
Georgia Institute of Technology
Motivation

Acquisition Timeline

<table>
<thead>
<tr>
<th>Phase</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-milestone 0</td>
<td>Determination of Mission Need and Deficiencies</td>
</tr>
<tr>
<td>Phase 0</td>
<td>Concept Exploration</td>
</tr>
<tr>
<td>Phase I</td>
<td>Program Definition and Risk Reduction</td>
</tr>
<tr>
<td>Phase II</td>
<td>Engineering & Manufacturing Development</td>
</tr>
<tr>
<td>Phase III</td>
<td>Production, Deployment, and Operation Support</td>
</tr>
</tbody>
</table>

Design Timeline

- Knowledge becomes available when time to make decision
- Design Freedom
- Cost Committed

Today
Future
Motivation
Motivation

Ease of Use

Fidelity

POST2
Motivation
Augmenting Conceptual Design Trajectory Tradespace Exploration with Graph Theory
Repetitions Method

- Repetitions are generated by pairing a single case from the Vehicle-Level DOE with a number of randomly selected Steering-Level input vectors.

Vehicle Level: $\hat{v} = \begin{bmatrix} masses \\ engines \\ enviro. \end{bmatrix}$

Control Level: $\hat{u} = \begin{bmatrix} pitch rates \\ launch azi. \\ etc. \end{bmatrix}$
Repetitions Method

- \(p_2 = 0 \) Failure Limit
- \(p_2 \neq 0 \)
- \(p_2 \geq 1 \) Feasibility Limit
- \(p_2 < 1 \)
Chaining

\[p_2 = 0 \]

Failure Limit

\[p_2 \neq 0 \]

Feasibility Limit

\[p_2 \geq 1 \]

\[p_2 < 1 \]
Graph Method

Node

Edge
Graph Method

\[d_{ij} = \left(\sum_{x_i} (u_i - v_i)^2 \right)^{1/2} \]
Graph Method

\[d_{ij} = \frac{\text{Kruskal's Algorithm} \cdot (v_i)^2}{n - 1} \]

\[n(n-1) \]

\[n-1 \]
Graph Method

\[n(n - 1) \quad \text{to} \quad n - 1 \]

Kruskal’s Algorithm

National Aeronautics and Space Administration
Graph Method

Graph Method

Failure Limit
Halfway Nodes

Failure Limit
Comparison Setup

- Comparison Metrics
 - Time to gather data
 - Surrogate fit from data – 2nd Order RSE
 - Coefficient of Determination - \(R^2 \)
 - Root Mean Squared Error - \(RMSE \)

- Repetitions
 - Number of available processors
 - Required completions to call a case ‘done’

- Graph
 - Number of available processors
 - Number of seed points initially included

<table>
<thead>
<tr>
<th>Trial</th>
<th>Processors</th>
<th>Required Completions</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>71</td>
<td>1</td>
</tr>
<tr>
<td>R2</td>
<td>71</td>
<td>5</td>
</tr>
<tr>
<td>R3</td>
<td>71</td>
<td>10</td>
</tr>
<tr>
<td>R4</td>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>R5</td>
<td>32</td>
<td>5</td>
</tr>
<tr>
<td>R6</td>
<td>32</td>
<td>10</td>
</tr>
<tr>
<td>R7</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>R8</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>R9</td>
<td>16</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Trial</th>
<th>Processors</th>
<th>Seed Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>71</td>
<td>10</td>
</tr>
<tr>
<td>G2</td>
<td>71</td>
<td>15</td>
</tr>
<tr>
<td>G3</td>
<td>71</td>
<td>20</td>
</tr>
<tr>
<td>G4</td>
<td>32</td>
<td>10</td>
</tr>
<tr>
<td>G5</td>
<td>32</td>
<td>15</td>
</tr>
<tr>
<td>G6</td>
<td>32</td>
<td>20</td>
</tr>
<tr>
<td>G7</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>G8</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>G9</td>
<td>16</td>
<td>20</td>
</tr>
</tbody>
</table>
Comparison Example Problem

◆ Single-Stage-To-Orbit Mars Ascent Vehicle

Rendezvous Orbit

Parking Orbit

ΔV Reserve

Throttle Down

Variable	Constant
Number of Engines | 3
Minimum Throttle | 20%

Variable	Range
Parking Orbit Perigee | +/- 10%
Parking Orbit Apogee | +/- 10%
Rendezvous Orbit ΔV | +/- 10%
Engine Isp | +/- 10%
Engine Thrust | +/- 10%
Propellant Mass | +/- 10%
Burnout Mass | +/- 10%
Repetitions Trials

- As available processors increases
 - Time required decreases
 - Repetitions submitted increases
- As required completions increases
 - Time required increases
 - Repetitions submitted increases
- Time history of Trial R3
 - Representative of Repetitions trials
 - “Easy” cases handled first, “Hard” cases require more repetitions, drag down convergence rate
Repetitions Results

- As the amount of data available for surrogate fitting increases, the fit improves
- Surrogate
 - Best trial: $R^2 = 0.9999$, RMSE = 45.50
 - Worst trial: $R^2 = 0.95214$, RMSE = 1024.41
- In the best case, the model averages at 0.02% error
As available processors increases
- Time required decreases
- DOE coverage decreases

As number of seeds increases
- Time required increases
- DOE coverage increases

Graph Trials

- As available processors increases
 - Time required decreases
 - DOE coverage decreases
- As number of seeds increases
 - Time required increases
 - DOE coverage increases
Graph Trials

- **Time history of trials**
 - Total data acquisition proceeds similarly to Repetitions
 - Optimal data acquisition sees a bump in rate around halfway through via the creation of halfway nodes
 - Increasing the number of seeds lengthens the process as a finite number of runs can be performed simultaneously
Graph Results

- Fastest graph trial returned over 2x the data returned by the fastest repetitions trial in 2/3 the time

- Surrogate
 - Best trial: $R^2 = 0.999986$, RMSE = 15.61
 - Worst trial: $R^2 = 0.999977$, RMSE = 19.90

- Best trial has average error of 0.00008%
 - Worst Graph trial outperforms best Repetitions trial
Comparison

- Repetitions
 - Produces more data per case on average
 - Output data is rough

- Graph
 - Produced data over 3x faster
 - Worst trial outperforms best Repetitions trial
Conclusion

◆ Repetitions
 ◆ Virtually no upper limit to concurrent executions
 ◆ Advantageous with a small number of points where very little is known

◆ Graph
 ◆ Finite number of chainings that can occur simultaneously
 ◆ Advantageous for filling in transition regions for better surrogate fit

◆ In the end, both are necessary for large-scale trade studies
Questions?