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Goal

 Goal: Design an optimal powered descent trajectory on-board 
the spacecraft in order to softly land on an irregularly shaped 
asteroid.

• Algorithm needs to be autonomous, reliable, robust, and 
efficient.

• Designing on-board facilitates an easy change of parameters.

 Convex optimization is efficient and reliable.

• Guarantees global minimum in a finite number of steps, if the 
problem is feasible.

• Subclasses include Second Order Cone Programming (SOCP).

 Can convex optimization be used to design the asteroid 
powered descent trajectory?



Original Problem Formulation

 Asteroid powered descent propellant optimal problem is 
nonlinear and nonconvex.

 Fixed final time two point value boundary problem

 State:                

 Control: 

 Highlighted terms are not permissible 
for a convex optimization problem.



Relax the problem by introducing a slack variable,       . 

Problem Relaxation

Original Problem Relaxed Problem

Proved the optimal solution of the relaxed problem is the optimal solution of the original.

New Constraint

Slack Variable



Irregularly Shaped Asteroid Gravity Models

 4x4 Spherical Harmonics Model

• Maximum Order and Degree 4

• No symmetry nor coordinate system location and alignment 
assumptions.

• High accuracy outside the Brillouin sphere.

• Not valid inside the Brillouin sphere.

 Interior spherical Bessel gravity model

• Valid inside the entire Brillouin sphere.

• Error less than 10% for the binary asteroid Castalia.

• Published in 2014 by Takahashi and Scheeres.

Brillouin 
Sphere



4x4 Bessel

 4x4 spherical harmonics gravity model outside the Brillouin 
sphere.

 Interior spherical Bessel gravity model inside the Brillouin 
sphere.

 Both models are summation series.

 Highly nonlinear in terms of spacecraft position vector.

 Computational similarities between the models allows for easy 
transition between the models.



Successive Solution Method

 Solve a series of convex optimization problems.

 Equations of motion can be arranged as:

 A and c are evaluated using the previous solution (k-1).

 In the (k)th iteration, dynamics are linear and time varying. 

 Iterations continue until two successive trajectories are within 
a set tolerance.

 This is not the same as conventional linearization, as there are 
no approximations in the final iteration.

 Dominant gravity term is placed in A, with the higher order 
gravity terms in c.



Successive Solution Method: A, B, c

Formulation assumes rotation vector is 
along the +Z axis,          .



Additional Techniques

 Change of Variables

 Discretization

• Continuous equation of motion turned into discrete equality 
constraints.

 Scaling

 Final optimization problem is convex.

• Linear equality constraints 

• Convex inequality constraints 

• Inequality constraints are second order cone.

• Actually a SOCP



Optimal Flight Time

 Desire to find the optimal flight time corresponding to smallest 
propellant usage.

 Propellant usage is unimodal with respect to flight time.

 Create an outer optimization loop using Brent’s method to 
optimize the flight time.

 Use dt = 10.0 sec to find the optimal flight time. Design the 
final trajectory with dt = 2.0 sec.

Optimize 

trajectory via 

cvx, dt = 10.0

Use tf*, Optimize 

trajectory via 

cvx, dt = 2.0

Brent’s method 

searches for 

minimum

Brent’s end criteria 

satisfied, 

rel+abs tolerance. 
Yes       yields tf*

No continue 

searching



Simulation Parameters

 Initial Conditions

• 1000 m altitude

• Out of plane and uprange position and velocity components.

 Using CVX, a publically available Matlab based convex 
optimization program.

 Asteroid Castalia

• Period 4.07 hr along +Z axis

• Three Landing Sites

 Spacecraft:

• Mass 1400 kg 

◊ 400 kg propellant

• Thrust 80 N – 20 N 

LS1
LS2

LS3



Flight Time Parameter Sweep

 Typically 3 iterations required in the successive solution 
method.

• Range 3 – 7

 Low number of iterations demonstrates stability in the 
successive solution methodology.



Inner Loop Trajectory Design

 400 Second Flight Time landing at LS3

 Thrust profile follows the traditional bang-bang.



Optimal Flight Time Optimal Propellant Trajectory

 Combined outer and inner loop executions took                     
2.2 - 2.5 minutes.

Optimal Flight 

Time, s

Propellant 

Used, kg

Number of Inner 

Loop 

Executions

LS1 512.86 5.31 7

LS2 512.27 5.34 7

LS3 513.35 5.34 7



Optimal Flight Time Optimal Propellant Trajectory 
Parameters

LS1 LS2 LS3

Velocity Magnitude Thrust Magnitude Slack Variable Check



Glide Slope Constraint

 Glide slope constraint: Constrains the vehicle to fly inside a 
cone around the landing site. 

•

 Near the landing site the vehicle must match the landing site 
velocity to rotate with the landing site.

 Low thrust of the vehicle (80 N) prohibits this.

 Alternate solutions for a 10 deg cone:

• Increase max thrust to 320 N

• Enforce the constraint for all,                                                    
but the last 6 seconds.

◊ Flies slightly outside the cone                                                 
near the surface.



Glide Slope Results

 LS2 500 second flight time.

 10 degree cone enforced.



Conclusions

 Asteroid powered descent trajectory design can be formulated 
as a convex optimization problem.

 Successive solution methodology is the key to handling a 
nonlinear gravity model.

 Formulated algorithm handles a wide range of parameters 
successfully.

 Flight time optimization is completed in an outer loop with 
Brent’s method.

 Inclusion of additional trajectory constraints in the algorithm is 
feasible.

 Viable algorithm for rapidly designing asteroid powered 
descent trajectories autonomously on-board the spacecraft for 
use in a variety of guidance algorithms.



BACK-UP



Convex Optimization and SOCP Formulation

 Optimization problem formulation

 Convex Optimization

• and         are convex functions.

• is linear. 

• Convex Function:

 Second Order Cone Program (SOCP)

• Subset of convex optimization

• and         are linear functions.

• is second order cone.

• Second order Cone:



Spherical Harmonics Gravity Model

 Fidelity determined by the 
coefficients and the 
number of terms in the 
summation series.

 with respect to the 
Cartesian coordinate 
system:

 Partial of the gravitational 
potential with respect to the 
position vector in spherical 
coordinates:

 Partial of the position vector in 
spherical coordinate system 
with respect to the Cartesian:

associated Legendre function
order, degree
radius, latitude, longitude



Interior spherical Bessel Gravity Model

 Summation Series:

 Basis Functions:

 Partials of the Basis Functions: 



Thrust Profile

 Three classes of thrust profiles

a) 300 s,             b) 550 s,           c) 650 s


