Exploring Cognition using Software Defined Radios for NASA Missions

Dale J. Mortensen
Cognitive Systems Lead

Richard C. Reinhart
Principal Investigator

Cognitive Communication Systems Project
NASA John H. Glenn Research Center
Cleveland, Ohio

Wireless Innovation Forum Conference
Reston, Virginia
March 15-17, 2016
Future Space Communications

- Communications across solar system
- International interoperability – cooperation with other space agencies
Steps and Objectives for NASA Cognitive Communication Systems

1. Software Defined Radios
 - Flexible technology for communications and navigation

2. Variable Coding & Modulation
 - Improves point-to-point data throughput and efficiency over fixed mode for deterministic environment changes.

3. Adaptive Coding & Modulation
 - Improves point-to-point data throughput, reliability, and efficiency over VCM for non-deterministic environment changes.

4. Cognitive Applications
 - Maximizes data throughput, communications efficiency (BW, power, etc.), interference and other mitigations.

5. Intelligent Network Automation
 - Reduces operations complexity and cost.
A cognitive system makes the most sense when all dimensions are considered.
Adaptive/cognitive applications

• Node-to-node communications (local knowledge)
• Cognitive & adaptive techniques to better use link resources (margin/power/spectrum) for data transfer (e.g. large volume)
• Self aware, able to respond to surroundings and link conditions

System wide knowledge and automation

• Ground control manages/monitors system assets for dynamic reconfiguration
• Architecture considerations for changing space system – inform network ops & MOC
• Automated service requests and usage, location sensitive information
• Event Manager grants requests according to other requests and priorities (hours, not weeks)
• Seamless connectivity among satellite relays and ground stations – use any available link

Internetworking (reliable data transport)

• Disruptive tolerant networking (DTN) overlay of adaptive/cognitive system
• DTN protocol changes to accommodate data rate and link changes (multi-node)
• Anytime, anywhere, any network connectivity
Distance Matters

Real-time feedback control from Earth on actual link.

Use of uplink metrics to control downlink mode.
Transmit waveform targeted for S-band SDR

- Compatible with the DVB-S2 standard V1.3.1
- Operates up to 6.16 Msym/s
- Up to 27.3 Mbps user data
- Direct-to-earth link band limited to 5 MHz (4.55 Msym/s, 20 Mbps)

Transmit Filters: SRRC, $\alpha = 0.2, 0.25, 0.35$, span = 12 symbols

Framing: CCSDS AOS

Utilization: 50% of Virtex-2 XC2V3000
Dynamic link difficult to model completely — appropriate scenario for automated adaptive approach.
DVB-S2 Direct-to-Earth VCM Testing Results

VCM yields significant increase in user data throughput over constant modulation and coding.

ACM will improve performance further towards capacity.

<table>
<thead>
<tr>
<th>User Data Throughput</th>
<th>Gain/Loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCM actual vs NASA Legacy</td>
<td>3.71 dB</td>
</tr>
<tr>
<td>Prediction</td>
<td>-0.59 dB</td>
</tr>
<tr>
<td>Capacity</td>
<td>-0.80 dB</td>
</tr>
</tbody>
</table>
16-APSK and LDPC (1/2, 2/3, 7/8) FEC transmit waveform on Ka-band flight SDR.

Non-linear digital pre-distortion used to compensate for Travelling Wave Tube Amplifier effects.

Commercial receiver on the ground.

Achieved 433 Mbps user data rate over 225 MHz Channel.
Point-to-Point Optimization Example
Digital Pre-distortion Results

DPD off EVM = 34%
DPD on EVM = 14%

- 16-APSK digital pre-distortion module: gain and phase adjustment of inner and outer rings to account for non-linearity
- Enables operation near saturation point of amplifier, and improves BER performance
- Plans to make this a dynamic adaptation with full duplex feedback
Virginia Tech - *Adaptive Modulation*

- Applying to direct-to-earth S-band uplink
- Using six PSK and QAM modulation schemes
- New waveform apps for SCaN Testbed; USRP development for ground systems
- Simulations show when shadowing from solar panels occur

Worcester Polytechnic and *Penn State* - *Adaptive Link Layer Protocol*

Atmospheric & Space Weather Impairments Research

- Time/temperature varying effects of ionosphere at Ka/S-band
- Multipath propagation of scintillated signals
- Mapping of effects into distinct states

Cognitive algorithms

- Machine learning: Neural networks, Reinforcement learning
SCaN Testbed Ground Network

Flight System on ISS
- 3 Relay Satellite Paths w/ IP
- On-Orbit Flight Computer
- VCM or other Experiment Laptop
- IP over CCSDS Gateway

Ground Testbed at GRC
- GRC Ground Station Path
- Direct to Ground Path
- 3 Relay Satellite Paths
- GRC Front End Processor
- RS-422 Serial
- SLE / DTN Gateway
- GRC External Services Network (ESN)
- IP over CCSDS Ground Network
- Internet
- VN or other Experiment Laptop
- GRC Ground Station or Test Gateway
- High-Bay Network (Ground Station and Ground Test Network)
- Other space agencies
- JPL Ground Station or Test Radio
- GD Ground Station or Test Radio
- Ground Testbed Flight Computer
- ABC Company
- GD Company
- JPL

Other Space Agencies
- IP over CCSDS
- Ground Station
- Test Gateway
Evolution to Intelligent Routing

Internet Protocol (IP) over CCSDS
Space Link Extension (SLE) Gateway
Delay Tolerant Networking (DTN)
Secure DTN
Launch Waveforms

Cross-layer Cognition (Sensing, Learning, Adapting)

End-to-end Data Exchange is:
Adaptive, Autonomous, Cross-layer Connecting, Secure, Scalable.
For more information

dale.mortensen@nasa.gov

richard.c.reinhart@nasa.gov

visit SCaN Testbed on-line:
http://spaceflightsystems.grc.nasa.gov/SOPO/SCO/SCaNTestbed