Human Research Program

Advanced Exercise Concepts (AEC) Overview

Gail Perusek, Project Manager
Beth Lewandowski, Marsha Nall, Peter Norsk,
Rick Linnehan, David Baumann

February 10, 2015
Human Research Program Investigator’s Workshop
The current ISS suite of exercise countermeasures hardware is a vast improvement over previous generations of equipment, however vehicle constraints for future exploration missions beyond LEO will not be able to accommodate the size and mass of these ISS-class devices.
The current ISS suite of exercise countermeasures hardware is a vast improvement over previous generations of equipment, however vehicle constraints for future exploration missions beyond LEO will not be able to accommodate the size and mass of these ISS-class devices.

Smaller but similarly capable exploration-class exercise devices will be required to support exploration-class exercise countermeasures regimens and functional performance requirements of the crew.

The Human Research Program (HRP) is managing AEC requirements development and candidate technology maturation for all DRMs from MPCV EM-2 (up to 21 day) to Mars Transit (up to 1000 day) missions.
AEC Scope

- **Oversee development** of candidate next generation exercise countermeasures hardware concepts that meet requirements for astronaut health and performance during long duration space missions
- Oversee device Requirements development for candidate systems evaluation (ground and flight)
 - Interpret Astronaut Strength Conditioning and Rehabilitation (ASCR), Exercise Portfolio (EPPf), Bone, Muscle, Sensorimotor, Behavioral Health research findings & inputs and translate to functional requirements for exercise countermeasures systems for all DRMs
- Perform **Market Surveys and Trade Studies** for current and state-of-the-art technologies
- Manage directed work and solicit technologies through NRAs, SBIRs, Innovation Crowd Sourcing Platforms
- Actively seek and fund **Lessons Learned** from relevant areas including CMS Ops
- Conduct and support **Technology Downselects** and provide recommendations to Human Health Countermeasures (HHC) element management
- Manage development of exercise concepts through TRL 6/7 (ground evaluation/flight validation) demonstrating efficacy and hand over to Programs (e.g., MPCV, ISSP) for subsequent flight development and operations

- Authority is captured in the Human Research Program Plan (HRP 47051C), and Human Research Program Requirements Document (HRP 47052E)
AEC – Multi-Purpose Crew Vehicle (MPCV) and Mars Transit Device Target Performance

<table>
<thead>
<tr>
<th>Device / DRM</th>
<th>ARED/ISS-1 year</th>
<th>MPCV - 21 days</th>
<th>Mars – 1000 days</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>~1200 lbm</td>
<td>20 lbm</td>
<td>~120 lbm</td>
</tr>
<tr>
<td>Resistive Load</td>
<td>600 lbf</td>
<td>400 lbf</td>
<td>600 lbf</td>
</tr>
<tr>
<td>Eccentric Load ?</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Aerobic ?</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

ARED – Advanced Resistive Exercise Device

ISS Flight - Operational

MPCV

Mars Transit Vehicle
AEC – Multi-Purpose Crew Vehicle (MPCV) and Mars Transit Device Technology Maturation

MPCV EM-2 Mission 2021 and beyond LEO

- **Requirements**
- **MPCV Device Summary and Trade Study Recommendations**
- **MPCV Downselect Process**

Cis-Lunar and beyond LEO Mars Transit Vehicle

- **Requirements**
- **Mars Transit Device Summary and Trade Study Recommendations**

NASA SBIRs
- **Direct Funded Development**
- **Exercise Industry**
- **Agency Repurposed Systems**

Device for Aerobic and Resistive Training (DART)
- **Miniature Exercise Device (MED2)**
- **Resistive Overload Combined with Kinetic Yo-Yo (ROCKY)**
- **Orion Flywheel**

Next Generation Resistive Exercise Device (NGRED)
- **Hybrid Ultimate Lifting Kit (HULK)**
- **Multi-Mode Exercise Device (M-MED)**
Project Milestones

MPCV Milestones

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EM-2 Delta PDR</td>
<td>EM-1 CDR</td>
<td>EM-2 DDTE Start</td>
<td>EM-2 PDR</td>
<td></td>
<td>EM-2 CDR</td>
</tr>
</tbody>
</table>

Exercise Hardware Milestones

<table>
<thead>
<tr>
<th>Requirements Baseline</th>
<th>Technology Maturation</th>
<th>Human Evaluations</th>
<th>Downselect</th>
<th>Critical Task Study</th>
<th>Prototype H/W Build/Testing</th>
<th>Reliability and Human Efficacy Testing</th>
<th>Final Design Delivery to MPCV Program</th>
</tr>
</thead>
</table>

- **HRP / EPPf Contribution**

- **HRP/AEC**

- **HRP/AEC Mars Transit**

- **Technology 1 Maturation**

- **Reliability and Human Efficacy Testing**

- **Technology 2 Maturation**

- **Reliability and Human Efficacy Testing**

- **Technology 3 Maturation**

- **Reliability and Human Efficacy Testing**

- **Flight Hardware Development (MPCV funded)**
AEC Highlights from the Past Year

Parabolic Flight Testing of MED-2
ISS Program JSC/ER MED-2 Project

Parabolic Flight Testing with HULK
Motion capture Operational Volume Assessment for MPCV

SBIR/Aurora’s Enhanced Dynamic Load
Sensor w/ER Force Shoes on HULK platform

Improved Rowing Modality
Flight #1

Parabolic Flight Testing with HULK
Rowing Exercise

Parabolic Flight Testing with HULK
Squat Exercise
AEC Highlights from the Past Year

Human in the Loop Testing for MPCV Downselect

Four Exercise Devices Evaluated for EM-2

Between October 7 and December 12, 2015, HRP and the JSC Exercise Countermeasures Laboratory evaluated four exercise device concepts for the Orion Exploration Mission (EM-2). The four devices were each evaluated by 10 subjects, totaling 40 individual exercise test sessions over two months. These human-in-the-loop evaluations will be major criteria for the downselect which will occur in mid-February 2016. The four devices evaluated include: Miniature Exercise Device 2 (MED2) developed by JSC Engineering Directorate, Wyle Flywheel developed by Wyle Laboratories and the JSC Human Health Performance Directorate, Resistive Overload Combined with Kinetic Yo-Yo (ROCKY) developed by Zin Technologies at the Glenn Research Center, and Device for Aerobic and Resistive Training (DART) which was funded by the SDRP Program.

- **DART - TDA Research**
- **Orion Flywheel - Wyle**
- **ROCKY – Zin Technologies**
- **MED-2 – JSC/ER**

Orion Egress Testing in Neutral Buoyancy Lab
AEC Highlights from the Past Year

Computer-Controlled Force Generator
TDA Research, Inc.
P.I.: Douwe Bruinsma, Contract#: NN01AC565P

OBJECTIVES

The primary goal of this work was to incorporate rowing functionality into the Next Generation Resistive Exercise Device (NGRED).
The NGRED has the following features:
- Provides a resistive load from 5 lb to 600 lb.
- Allows barbell speed of 3.1 m/s.
- Includes barbell and single-cable interfaces.
- Automatically adjust to the user’s range of motion.

In this project, we updated the software with a rowing algorithm to simulate a commercial rower.
We developed a quick release attachment for the NGRED to function as a rower in parallel contract NN01AC565P.

Delivery of Phase III Next Generation Resistive Exercise Device

2x2015 Class IE Flight MED-2
SS Program JSC/ER MED-2 Project

MIT Gravity Loading Countermeasure Skinsuit Testing in Exercise Countermeasures Lab (ECL)

Biomechanical Data Collection with Digital Astronaut Project in Exercise Countermeasures Lab (ECL)
Thank you!
Device Mass and Force Capacity across DRMs

Device Mass (lbm) and Force (lbf)

<table>
<thead>
<tr>
<th></th>
<th>Pounds</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARED</td>
<td></td>
</tr>
<tr>
<td>DSH</td>
<td></td>
</tr>
<tr>
<td>MPCV</td>
<td></td>
</tr>
</tbody>
</table>

ARED
DSH
MPCV

Mass
Force
Exercise Countermeasures Laboratory (ECL)

- **Capability:** Exercise Countermeasures Lab
 - Ground analog for simulating human-machine-vehicle interface for Vibration Isolation System verification and,
 - Investigator resource for simulating – zero-g, lunar-g, and Martian-g exercise
 - Human in the loop testing of new concepts