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Structural Changes in the Posterior Eye

Kramer et al. Radiology, 2012.

Normal

Astronaut with VIIP
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Increased CSF pressure, transmitted 
to the RB-SAS, drives remodeling of 
connective tissues in the posterior 
eye and optic nerve sheath

Eventually leads to the vision disturbances 
characteristic of VIIP

Hypothesis
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Study the biomechanical response of 
the optic nerve sheath and posterior 
eye to elevated CSF pressures

Key tool: Finite element modeling

Goal



Methods



Slide 6

Basic Modeled Geometry 

Adopted from Ekington et al. 1990

Hansen et al. Acta Ophthalmologica, 2011.
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Model Overview
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Finite element model
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Tissue Constitutive Models
o Mooney-Rivlin plus von Mises Distributed Fibers
o Proposed by Girard and Ethier for the the sclera

o Implemented into FEBio V2 by Gouget and Girard for thin tissues

o F1 represents ground substance (neo-Hookean):

o F2 represents collagen fibers
o Collagen fibers are loaded within their non-linear region 
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Collagen Orientation in the Sclera
o Sclera: collagen fibers treated as transversely isotropic

o Peripapillary sclera: moderately aligned collagen fibers

o Annular ring: highly aligned collagen fibers

~ Pijanka et al. 2012 & Zhang et al. 2015
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Collagen Orientation in the ONS
Pia mater and dura mater: fibers were modeled as 
transversely isotropic

~Raspanti et al. 1992 Noort et al. 1980 & Raykin et al. 2015

Dura Mater
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Outcome measures
o Strain (fractional tissue elongation) in all 

tissue regions
o Strain is a tensor and can be decomposed 

into 3 primary components

o First principal strain (stretch)

o Second principal strain

o Third principal strain (compression)

o Why do we care about strain?
o Cells are mechanosensitive and alter their 

phenotype in response to mechanical strain
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Latin Hypercube Sampling (LHS)
How do variations in pressures and tissue mechanical 
properties affect tissue strains?
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Latin Hypercube Sampling (LHS)

Lamina 
Cribrosa

Regions of Interest:

Retina

Optic
Nerve

Primary outcome measures: peak tensile and 
compressive strains in the retina, lamina cribrosa 
and retrolaminar optic nerve
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Tissue Material Properties
1. Linear-elastic, homogenous and isotropic

◦ Tissues: lamina cribrosa, optic nerve, retina and retinal 
vessel
◦ Simplification chosen due to limited information & low impact

◦ 2 input parameters: stiffness (E) and tissue 
compressibility (ν)

2. Mooney-Rivlin solid with embedded collagen 
fibers
◦ Tissues: sclera, peripapillary sclera, annular ring, pia 

mater and dura mater
◦ Allows more complex, nonlinear behavior and collagen fiber orientation 

and stiffness



Results



Slide 18

ICP: 0 mmHg ICP: 20 mmHg

1st Principal Strain
(Tension)

3rd Principal Strain
(Compression)

2.0%

-2.0%

Principal Strain Magnitudes
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Principal Strain Directions

1st Principal Strain 3rd Principal Strain

2.0%

-2.0%
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Is LHS Sampling Unbiased?
Use sign test to identify possible sampling bias
◦ Do input parameters generated by LHS have a median value 

significantly different than our baseline value? 

◦ Answer: no (p>0.48 for all input parameters) 

Confirmed by scatter plots
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Optic Nerve
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Prelaminar Tissue
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What creates “extreme strains”?
◦ ICP significantly higher in G2

◦ Lower pia mater ground substance and fiber stiffness in G2

◦ Lower MAP and higher optic nerve compressibility in G2

G1 G1

G2G2
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Summary

o 47% of individuals experience “extreme strains” 
in the optic nerve (c.f. 41% of astronauts suffering 
from VIIP syndrome)

o Identified specific factors that are associated with 
these extreme strains 
◦ Elevated ICP, weak pia mater

o Future experimental work should examine how 
strains initiate a remodeling response in the optic 
nerve and optic nerve sheath



Ongoing Work
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Integration

Cardiovascular Central Nervous Eye FE

Run 1 x1….x42 y1….y17 z1….z20

Run 2 x1….x42 y1….y17 z1….z20

Run N x1….x42 y1….y17 z1….z20

Blood 

Pressure
Intracranial 

Pressure (ICP)

LHS Inputs

16 Compartment 
Cardiovascular System

6 Compartment 
Central Nervous System



Model Integration

MAP

ICP

IOP

Material Properties

LC Strain

Optic Nerve Strain

Retina Strain

CVS

CNS

Eye
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