Gamma-ray Survey of our Universe

C. Michelle Hui
NASA/MSFC
Oct 12, 2016
Multi-Wavelength View of our Galaxy

[Image: Multi-wavelength view of the Milky Way showing various wavelength bands, including radio continuum, atomic hydrogen, molecular hydrogen, infrared, mid-infrared, near infrared, optical, X-ray, and gamma-ray.]
Gamma-ray View of our Galaxy

HAWC >100GeV

PRELIMINARY

Credits: NASA/DOE/Fermi LAT Collaboration
High Energy View of our Galaxy

- **Fermi LAT 0.05 — 2 TeV, >6 years**
- **HESS >1TeV, 10 years**
- **HAWC 0.1 — 100 TeV, 1 year**

Credits: NASA/DOE/Fermi LAT Collaboration

Supernova Remnants

Pulsar Wind Nebulae

TeV Binaries

Supernova Remnants

Pulsar Wind Nebulae

TeV Binaries

Credits: NASA / CXC / SAO / F.D. Seward, W.H. Tucker, R.A. Fesen

Mirabel, Science, 312, 1759
Gamma-Ray Detectors

Wide Field of View, Continuous Operations

- **Fermi**
- **AGILE**
- **EGRET**
- **HAWC**
- **ARGO**
- **Milagro**
- **Tibet ASγ**
- **HESS**
- **FACT**
- **MAGIC**
- **VERITAS**

Sensitivity

- $<0.1°$ angular resolution
- 10 s GeV to 10 s TeV
- 100 GeV to >100 TeV
- 100 MeV to >100 GeV

Timeline

- **Milagro** 2000-2008
- **ARGO** 2007-2014
- **Milagro** 2000-2008
- **HAWC** 2013 - present
- **Tibet ASγ** 1990-present
- **MAGIC**
- **VERITAS**
- **HESS**
- **FACT**
HAWC collaboration

supported by:
US National Science Foundation (NSF);
The Laboratory Directed Research and Development (LDRD) program of Los Alamos National Laboratory;
Consejo Nacional de Ciencia y Tecnología (CONACyT), México;
Red de Física de Altas Energías, México;
DGAPA-UNAM, México;
and the University of Wisconsin Alumni Research Foundation.

Georgia Institute of Technology
George Mason University
Los Alamos National Laboratory
Michigan State University
Michigan Technological University
NASA/Goddard Space Flight Center
NASA/Marshall Space Flight Center
Pennsylvania State University
Stanford University
University of California, Irvine
University of California, Santa Cruz
University of Maryland
University of New Hampshire
University of New Mexico
University of Rochester
University of Wisconsin-Madison
University of Utah

Centro de Investigacion en Computacion, IPN
Centro de Investigacion y de Estudios Avanzados del IPN
Benemérita Universidad Autónoma de Puebla
Universidad Nacional Autónoma de México:
 Instituto de Astronomía
 Instituto de Ciencias Nucleares
 Instituto de Fisica
 Instituto de Geofísica
 Instituto Nacional de Astrofísica, Óptica y Electrónica
Universidad Autónoma del Estado de Hidalgo
Universidad Michoacana de San Nicolás de Hidalgo
Universidad Autónoma de Chiapas
Universidad Politecnica de Pachuca
Universidad de Guadalajara
Max-Planck Institute for Nuclear Physics
Instytut Fizyki Jadrowej im Henryka Niewodniczanskiego
Polskiej Akademii Nauk
Mapping the Northern Sky in High-Energy Gamma Rays

HAWC Observatory

HAWC operates day and night, providing a large field of view for the observation of the highest energy gamma rays.

HAWC is located at 4,100 m above sea level, covering an area of 20,000 m².

Water Cherenkov tank

HAWC comprises an array of 300 tanks that record the particles created in gamma-ray and cosmic-ray showers.

Particles inside the shower produce Cherenkov radiation that is detected by the PMTs.

Gamma rays vs cosmic rays

HAWC selects gamma rays from among a much more abundant background of cosmic rays.

“hot” spots concentrate around the core
“hot” spots are more dispersed
Gamma/Hadron Separation

hadronic event
gamma ray-like event
HAWC Sensitivity

- 0.2° PSF$_{68%}$ at highest energy
C. Michelle Hui

Gamma-ray Survey of Our Universe

Gamma-Ray Observatory

- Sensitive from 100 GeV to 100 TeV.
- Angular resolution (68% containment) 0.2-1.0 degrees.
- 2sr instantaneous field of view, 2/3 of sky each day.
- >95% duty cycle.
- **Strengths:**
 - Extreme high-energy reach.
 - Wide field-of-view: ideal for transients and extended objects.
 - High duty cycle.

High Altitude Water Cherenkov (HAWC)

- HAWC-30: began Aug 2012
- HAWC-111: Jun 2013 (~280 days)
- HAWC: Nov 2014 (341+ days)
- Inauguration Mar 2015
Milagro 8-Year TeV Sky Survey

HAWC predecessor

Crab at 17σ in 8 years.
HAWC TeV Sky Survey

- HAWC is ~15x more sensitivity with lower energy threshold compared to Milagro, and more sensitive towards Galactic center.
- Skymap from 341 days of data taken with the finished HAWC array.
- Point source analysis assuming power-law index of 2.7.
Crab Nebula at highest energies

• photons up to 80TeV reported by IACTs
• insight into magnetic field environment and efficiency of particle acceleration

60TeV photon from the Crab Nebula seen by HAWC.
Pulsar Wind Nebulae

Geminga

- Closest known middle aged pulsar
- Possible nearby cosmic ray acceleration site — explanation for positron excess (Yuksel et al. 2009)
- Not seen by IACTs, extent maybe larger than IACT FOV.
- Ongoing morphological and spectral studies

Milagro - Point Search

XMM, Pavlov et al. 2010
Pulsar Wind Nebulae

PSR J0659+14

- New PWN seen near Geminga!
- Similar large extension seen in data.
- This pulsar is very similar to Geminga pulsar:

<table>
<thead>
<tr>
<th></th>
<th>Geminga</th>
<th>PSR J0659+14</th>
</tr>
</thead>
<tbody>
<tr>
<td>age [yr]</td>
<td>3E+05</td>
<td>1E+05</td>
</tr>
<tr>
<td>distance [pc]</td>
<td>250</td>
<td>288</td>
</tr>
<tr>
<td>spin-down power [erg/s]</td>
<td>3E+34</td>
<td>4E+34</td>
</tr>
</tbody>
</table>

- Geometry and diffusion studies on propagation of electron/positron to Earth.
New TeV Sources!

New TeV emission region
2HWC J1927+187*
• ~7σ pre-trials
• current blind search algorithm identify this region associated with 2HWC J1930+188, ongoing analysis on spatial morphology

2HWC J1930+188
• coincident with VER J1930+188 (SNR G54.1+00.3 / PSR J1930+1852)
• TeV emission was reported to be point-like and likely from PWN
• nearby molecular CO cloud

New TeV source
2HWC J1928+178
• ~8σ pre-trials
• coincident with PSR J1928+1746
• tail towards unidentified source 3FGL J1925.4+1727
• VERITAS point source upper limit ~1.4% of Crab
New TeV Sources!

New TeV source
2HWC J1953+294
• confirmed by VERITAS
• potential association:
 • PWN DA 495 seen in X-rays
 • 3FGL J1951.6+2926
2HWC J2019+368 is coincident with MGRO J2019+37 and VER J2019+368
- extended emission including PSR J2021+3651 and HII region Sh 2-104

New TeV source 2HWCJ2006+340:
- >6σ pre-trials
- 0.6° from unidentified source 3FGL J2004.4+3338
two distinct TeV sources:

- 2HWC J2031+415 — TeV J2032+4130, a PWN
- 2HWC J2020+403 — VER J2019+407, UID encompassing SNR G78.2+2.1 and PSR J2021+4026
- extended emission region 2HWC J2025+410* and 2HWC J2027+403* at Fermi cocoon / ARGO superbubble region

Cygnus Region
Galactic Diffuse Emission

Diffuse contributions:
- Cosmic-ray interactions
- Molecular clouds
- Interstellar gas
- Inverse Compton
- Unresolved sources.

Leiden/Argentine/Bonn (LAB) Survey of Galactic HI

courtesy of LAMBDA

Milagro

Abramowski et al. 2014

Gamma-Ray Survey of Our Universe
A uniform surface brightness fit in addition to source model is preferred at 5.7σ. The fitted surface brightness at 5 TeV is $1.6\pm0.4\times10^{-11}$ TeV$^{-1}$ cm$^{-2}$ s$^{-1}$ sr$^{-1}$. HESS average diffuse extrapolated to 5 TeV is $1.0\pm0.2\times10^{-11}$ TeV$^{-1}$ cm$^{-2}$ s$^{-1}$ sr$^{-1}$. Current limit from HAWC-111 dataset includes unresolved sources.
Large-scale structures e.g. Fermi Bubbles

- Large scale, non-uniform structures extending above and below the Galactic center.
- Edges line up with X-ray features.
- Correlate with microwave excess (WMAP haze)
- Both hadronic and leptonic model fit Fermi LAT data. Leptonic model can explain both gamma ray and microwave excess.
Large-scale structures e.g. Fermi Bubbles

- Large scale, non-uniform structures extending above and below the Galactic center.
- Edges line up with X-ray features.
- Correlate with microwave excess (WMAP haze).
- Both hadronic and leptonic model fit Fermi LAT data. Leptonic model can explain both gamma ray and microwave excess.
- First limits in TeV, hard spectrum is highly unlikely.

extrapolated models from Ackermann 2014

Transient Search

Crab Nebula
- Crab flares, continue up to TeV?
- No activity in radio, IR, and X-rays.

HAWC observation:
- Data is consistent with a constant flux.
- Coincident observation with Fermi-LAT reported Crab flare starting Jan 7 2016.
- 95% C.L. upper limit on 13-day average flux above 1 TeV is 1.01x average Crab flux.

Credit: NASA/DOE/Fermi LAT/R. Buehler
Transient Search

AGN flares Mrk 421 / Mrk 501
Multi-wavelength / Multi-messenger

Have follow-up agreement with:
• Swift
• Fermi-LAT
• IACTs
• FACT
• HESS
• MAGIC
• VERITAS
• AMON
• IceCube
• ANTARES
• LIGO/VIRGO

HAWC-triggered:
• New source candidates lists.
 • follow-up observations by IACTs such as VERITAS and MAGIC from Pass 1 release.
 • Flares from known gamma-ray sources.

Externally triggered:
• IceCube alert on high confidence neutrino event (highest energy pointed astrophysical track-like).
 • Fermi alerts on flaring activities.
 • LIGO/VIRGO gravitational wave event follow-up

HAWC ATel #8922 on Mrk 501 flare

IceCube ATel: #7856
HAWC Follow-up ATel: #7868
12 NaI detectors
(8keV—1MeV)

2 BGO detectors
(200keV—40MeV)

Gamma-ray Burst Monitor

GBM:
• FOV >8sr
• Whole sky every ~90min
1404 GBM GRBs

- 1175 Long
- 229 Short
- 191 also triggered Swift-BAT

- Brightness of weak short GRBs does not appear to be redshift dependent
 - i.e. weak ≠ far away
Gamma-ray Bursts

- Collapse of a massive star or merger of two compact objects.
- Collimated relativistic outflow.
- Prompt keV-MeV emission, afterglow in other wavelengths.
- Detected ~ once per day, distributed all over the sky.
Follow-up to Gravitational Wave Event GW150914

- Untriggered sub-threshold signal 0.4s after LIGO trigger.
- Consistent with a low-fluence short GRB coming from behind Fermi.
- Poorly localized but consistent with LIGO localization.
- 0.2% post-trials probability in statistical fluctuation.
Untriggered GBM GRB search

- In addition to the directed search with LIGO events, untriggered search in the Continuous Time Tagged Events (CTTE) data is ongoing.
 - 2 µs time resolution with 128 energy channels
 - 10+ timescales: 64ms to 2.8+ s
 - multiple energy ranges
- Working towards creating automated GCNs, will be distinct from triggered events type.

http://gammaray.nsstc.nasa.gov/mbm/science/sgrb_search.html
INTEGRAL Anti-Coincidence Shield (ACS) lightcurve

- 2014-07-09 08:49:56.600
- Found in 1.40s time binning
- 25 - 494 keV energy range
- $P=7.75\times10^{-14}$

ACS native time bin

GBM timescale
GBM Candidate Event

- 2014-06-06 10:58:13.625
- Swift GRB 140606A
- Found in 0.25s time binning
- 93 - 494 keV energy range
- $P=1.91 \times 10^{-16}$

INTEGRAL ACS lightcurve

ACS native time bin

GBM timescale

Not all GBM triggered short GRB are detected by ACS.
Outlook

- Both Fermi and HAWC surveying and monitoring the gamma-ray sky in different energies, with ground-based telescopes such as VERITAS ready for follow-up.
- Many instruments from different waveband/messenger (X-rays, neutrinos, gravitational waves) available for simultaneous observation.

- HAWC observatory catalog of first year full operation is in prep (2HWC), with new TeV sources!
- Diverse science results, stay tuned!
- Upgrade to expand the array to enhance effective area >10 TeV by 3-4x is currently under installation.