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Executive Summary

Approach
The LEAPTech experiment was an ambitious initial foray into Airframe-Propulsion Interaction (API)
analysis, design, and testing
* Approach was akin to George Mueller’s Apollo “All-Up Testing” philosophy
* New design / analysis regime -- CFD of the API configuration
* New propulsion system -- Batteries / controllers / motors / propellers
* New testing approach -- Truck-based lakebed “wind tunnel”
e “All-Up Testing” carries inherent risk
* Failure is an option

Results
Four illustrative examples:
* Inability to accurately control or accurately measure the test condition
* Large experimental uncertainties
* Multiple CFD analyses not yet converged to a single answer
e Experiment configuration yielded a nonlinear environment with significant contaminatory
AC signal components



Executive Summary

Recommendations
e Consider LEAPTech as a valuable exercise in identifying PAI areas requiring additional investment

* Consider a back-to-basics, foundational, incremental approach
 Demonstrate success on a much simpler configuration first, before moving to the multi-
engine-wing or complete-aircraft problem
* Experimentally
e Analytically
* Evaluate a larger suite of analytical tools for PAIl applicability, before selecting one for
production use
* Leverage existing wind tunnel and other data sets for code validation



LEAPTech Lakebed Test Configuration

Truck Testing Configuration

Bolted Joints -- on supporting trusswork
Airbag suspension -- to reduce transmitted
road vibration

Water Ballast Tanks -- to lower Center of
Gravity

Sway Braces -- to constrain airbag lateral
displacement

Force and Moment Instrumentation
 Load Cells
» Lift / Pitch / Roll Load Cells (4 each -
- overconstrained)
* Drag/ Yaw Load Cells (2 each)
e Lateral Load Cell (1 each)
AOA Adjustment (2 each)




Testing in “Calm” Weather Conditions Metek anemometer measures 3D
winds at 20 samples/sec

As defined by NOAA:

https://www.aviationweather.gov/static/help/taf-decode.php

“Calm winds (three knots or less) are encoded as 00000KT”

* Murray’s personal observation is that EAFB winter winds below 2
MPH are insensible

* But our Metek ultrasonic anemometer can measure winds well
below 3 kts (it uses time-of-flight, not rotating elements)

e At our 73 MPH test condition:

+/- 3 knots headwind yields +/- 9.7% in dynamic pressure
+/- 3 knots crosswind yields +/- 3.5 deg beta

e Oct 15 2015, a “good” test day, we observed spatial and temporal variations in winds on ~1 mile and ~1 minute scales:

Observed +1 to +2 deg beta AND -2 to -3 deg beta on the same runway pass

e 4 “Primrose Paths” to avoid:

Testing at low airspeed, unless you have 100% control of the test condition (wind tunnel)

Qualitative assessment that “calm” weather conditions mean zero winds

Averaging results from “upwind” and “downwind” passes

Using measured winds in vicinity of the testing runway in place of relative wind on the test vehicle itself



https://www.aviationweather.gov/static/help/taf-decode.php
https://www.aviationweather.gov/static/help/taf-decode.php

Operational Scenario
Airdata Measurement System

S JRETEEES A e 12000-foot runway with anemometer near each end

.
B o o
A o o on) AVe

GPS truck speed minus measured winds provides
low-frequency component of airspeed

Wing-mounted airdata probe provides high-
frequency component of airspeed

Both signals were blended for final airspeed estimate




CFD for Selection of Airdata
Measurement Location

Current

Desirable attributes:
Cp =0 (V_local = Veo)
* Low pressure gradients

* Low flow angularity
* Invariant with wing AOA
Qbar Reads Qbar Reads Qbar Reads * Short, faired support shaft
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Actuator Disk Modeling of Propeller

In CFD, propulsive energy is added to the flow at the propeller

disk and combined as a boundary conditions in CFD:
* Streamwise Force (thrust)

* Tangential (torque)

Shaft power values “mapped” to estimated thrust and torque

coefficients

No evidence that implementation was verified between LaRC
and Joby (large uncertainty in drag between CFD results?)

Wind turbine extracts energy from the
freestream, so its streamtube ~grows"™
in diameter downwind



Propulsion System Asymmetry

Power-On Asymmetry
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At the same RPM, the motors on left wing
are absorbing about 15% more power than
those on right wing

40 |bf estimated thrust imbalance despite
noisy load cell signals

15 deg of rudder deflection is estimated
(using flight-measured SCEPTOR rudder
effectiveness) to correct the yawing moment
created by thrust imbalance (about 240 ft-
|bf)



Other Test and Result Concerns

Inability to:
* Accurately control the test condition (truck did not have a working speedometer)
* Accurately measure the test condition

Large experimental uncertainties

Experiment configuration yielded a nonlinear environment with significant contaminatory AC signal
components

Multiple CFD analyses not yet converged to a single answer



Conclusions

LEAPTech experimental results compromised by myriad error sources and omissions:
* Inability to accurately control or accurately measure airspeed and sideslip
* Asymmetric thrust
* Thrust unknowns
* Flow interference of truck, trusswork, and ground effects
e Uncalibrated and nonlinear force balance
* Relevant local-flow details not measured
* Presence of multiple and nonlinear AC excitation sources
» Aliasing? (probably) EMI? (more likely than in most experiments)

CFD at idealized conditions is not relevant for comparison with the LEAPTech experiment, due to overly
optimistic modeling:

* Perfect control and knowledge of test airspeed, AOA, beta

» Perfect knowledge of geometry including measurement locations

* Symmetric propulsion system

* Perfect knowledge of thrust model

* No truck, trusswork, or ground effects

CFD solutions are not yet sufficiently converged for relevant comparison with ~any™~ experimental results
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For Blown Wing, Better to Compare Lift and Drag Forces
(not CL and CD) with CFD

For the unblown wing, CL and CD are essentially invariant with moderate changes in test airspeed
True because at our test condition (M = 0.1, Re = 1076), we are not near any M or Re “boundaries’
So, if test dynamic pressure is a bit off-nominal — say 10% -- CL and CD will still be meaningful for
comparison

(This is one of the primary reasons for using nondimensional coefficients like CL and CD)

)

Not so for the blown wing

Blowing largely masks the wing from the effect of freestream dynamic pressure

But ... the freestream dynamic pressure is used for nondimensionalization

With blowing, if the test dynamic pressure is a bit off-nominal, the CL and CD will be incorrect

To protect oneself against errors due to nondimensionalization by a poorly-measured (incorrect)
dynamic pressure, comparison of Lift and Drag is probably more meaningful than CL and CD
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Net CL

Blown Wing (Props Powered) -- Lift and Drag Coefficients
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Net CL

Blown Wing (Props Powered) -- Lift and Drag Coefficients
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Net CL

Blown Wing (Props Powered) -- Lift and Drag Coefficients
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Looking Aft on Left Wing at Motor 5

Outboard Row of
Strip-A-Tubing

Bottom-surface wing pressures
reasonable agreement with CFD

Upper-surface pressures significant
disagreement with CFD

Pressures on inboard “windward
side” of nacelle are repeatable

Pressures on outboard “leeward
side” of nacelle are not repeatable

Local-Flow Details --
Wing Surface Pressure Measurement

1

Test Condition - AocA: 12°, Flap Setting: 40°, Motor Speed:0 RPM Ground Speed: 73 mph

Inboard of Nacelle

CFD (Joby)
Pass 1 Pass 2
Pass 3 Pass 4

0 2 4 6 8 10 12 14 16 18 20 22
Outboard of Nacelle




Drag, Ibf

Drag, Ibf

-150

Drag Measurements — Modal Interaction (Flutter?)

Ground Speed 73 RPM 6370
50 , . T

sl W

ooV VLML ML WL W AN LY WY

Time, sec

w A

N

Magnitude

—

0 10 20 30 40
Freq, Hz

Ground Speed 59 RPM 0

0 05 1 15 2
Time, sec

Magnitude
N WA

—

o

Freq, Hz

Drag, Ibf

Drag, Ibf

-100
-150¢+
200L-hA- ARE LT X
-250+
-300

Ground Speed 40 RPM 6370

Port

£

w

N

Magnitude

-
I

0 10 20 30 40
Freq, Hz

Ground Speed 34 RPM 0

£

w

N

Magnitude

-
T
I

o

Freq, Hz

Modal survey identified
structural modes at 1.4, 4.6,
and 5.4 Hz

Harmonic content indicates
nonlinearities

Frequency of unknown
forcing function energizes
structural modes at 59 MPH
and 34 MPH

Unknown mode injects
energy into the structural
mode — “flutter”?

Where does “missing” drag
load go — into lateral load
cell?



Recommendations

e Consider LEAPTech as a valuable lesson in identifying Propulsion-Airframe
Interaction areas requiring additional investment

* Invest in a foundational (back-to-basics) approach, characterized by:
* “What are the right analytical approaches to the problem?”
* “What are the experiments that can supply tool-validation data?”



Recommendations

Some specific foundational building-blocks:

1. Perform CFD sensitivity studies of LEAPTech wing to:
 CFL, gridding, . ..
* Nonzero sideslip
e Thrust asymmetry
 Ground effect

2. Find measured performance data sets for a LEAPTech-scale or SCEPTOR-scale
propeller and use for:
* CFD validation test cases
* AIRVolt experimental validation test cases

3. Build an AFRC-maintainable “Tool Kit” to go from ...
e a point-cloud scan of propeller to ...
 a CAD model suitable for CFD and other propeller analysis tools, to ...
e predictions of thrust and torque performance.



Backup Slides



Veldhuis Wind Tunnel Data Sets

98 CHAPTER 5. EXPERIMENTAL INVESTIGATION
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Airdata Estimation System

\ 4

Total Pressure

Tare at Runway Ends

v

Static Pressure

Interpolate between
Runway Ends

\ 4

Air Temperature

Earth-relative (GPS)
Vehicle Velocity
Components

v

"| Standard

Airdata
Equations

High Pass
Filter
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Ss+a

Low Pass
Filter
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Earth-relative Wind
Velocity Components
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A RPM,
L-R

A Power,
L-R

A Thrust,
L-R

BT 11 1 . — R i —_— v

Attempt to Symmetrize the Thrust

100

1 | | f .f |
QRPN — S— TR
-150 RPM

16.023 16.024 16025 16026 16.027 16.028 16.029

16023 16.024 16025 16.026 16.027 16.028 16.029
UTC Time, hours

Had test points in place to run left-
wing motors at different RPM than
right wing

No realtime knowledge of thrust
asymmetry, so it was a a cut-and-try
approach

Only got 1 test point before
motor/controller failures
terminated the experiment

A RPM of approx. 375 RPM would
have symmetrized the thrust



Ground Effect

Effect on CL Max

Effect of Height above Ground (Bowers & Curry)

Corda

G650 Accident Report

CLM
Redu

Lift

CL Max

Increased : >
/ Angle of attack

O Without ground,
free flow

O In proximity of
the ground

| | |
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Angle of attack, deg

s4p3
(a) Lift.

Lift
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Figure 5. Airplane lift versus angle of attack in and out of ground effect.
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Fig. 4 Ground-effect lift coefficient incrément;

CID/720 at 40* flap.

03—
Lz ©
o] f%
o
01— o
Co @
]
P o - OU(PD fe Lo}
incrament Ooép Oo
-1 (o] a
o
—n2— Q
D
-0 l ] | | | | |
[] 2 A 8 A 10 12 14
Whueael height above ground
Span

Fig. & Ground=-effoct drag coefficient Increment;
CIO/720 at 40% flap.

Effect with Blown, Flapped Wing
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Figure 3.~ Wing-in-ground effect (WIG) model.
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Mode Frequency, Hz

Observed Mode of Unknown Origin

Characteristics of Unknown (Aerodynamic?) Excitation
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Frequency linearly proportion to ground speed
(or airspeed), and intersects the origin

Frequency is independent of motor/propeller
power setting

Mode is antisymmetric

Frequency and phase correspond to 2D vortex
shedding from a 2.2-ft wide vertically-oriented
structure
S=fd/V
d=SV/f
107E

d=02x c cSleS
(96 Y

=22 ft
)

The source of this excitation remains unknown



Local Flow Details — CFD versus LEAPTech Lakebed Test
Measured AOA

is V2X true AOA!
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30 | I I I [
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* The “Why” -- Local flow detail 2 ., O AFRCCFD I (RN /SO SR _
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Harmonics and DC Offset as Symptoms of Nonlinear Dynamics

Synthetic data for illustration 100 ; ; 1

10 Hz sine wave sampled at
125 SPS (representative of
LEAPTech)

Amplitude
(=

Clipped (partially rectified),
symmetrically and -100
asymmetrically 0

Asymmetric clipping yields DC
component to signal

Nonlinear behavior in time
domain appears as harmonic
content and DC component in
frequency domain




Harmonics and DC Offset as Symptoms of Nonlinear Dynamics

Synthetic data for illustration

10 Hz sine wave sampled at 125
SPS (representative of
LEAPTech)

Clipped (partially rectified),
symmetrically and
asymmetrically

Asymmetric clipping yields DC
component to signal

Nonlinear behavior in time
domain appears as harmonic
content and DC component in
frequency domain
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Expected CL for Unblown, Flapped Wing
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Previous Work in Propeller-Wing
Interaction Wind Tunnel Testing
with CFD Comparison

Propeller Wing
Aerodynamic Interference

Proefschrift
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LOW SPEED WIND TUNNEL INVESTIGATION
OF PROPELLER SLIPSTREAM AERODYNAMIC
EFFECTS ON DIFFERENT NACELLE/WING
COMBINATIONS

Part 2: Propeller Slipstream Flow Field Surveys (Velocity Com-
ponents, Dynamic, Total and Static Pressure Distributions)
at Zero Angle of Attack and High Power

by
Ingemar Samuelsson

0\0\ bt

42nd AIAAJASME/SAE/ASEE Joint Propulsion Conference & Exhibit AlAA 2006-4969
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Unsteady CFD Simulations of Propeller Installation
Effects

Arne W. Stuermer®
DLR, German Aerospace Center
Institute of Aerodynamics and Flow Technology

Lilienthalplatz 7, 38108 Braunschweig, Germany

A series of unsteady CFD simulations have been conducted for a set of generic isolated-
and installed-propeller configurations at low-speed flight conditions. The propeller geome-
try investigated is a four-bladed design typical of those used on modern regional turboprop
aircraft. The computations were performed with the unstructured DLR TAU-code and
the numerical results are pared with experi al data obtained in a wind tunnel test
campaign conducted in the 1980s. The results of the unsteady computations agree well
with the available propeller slipstream data and surface pressure distributions measured in
the wind tunnel. Additionally, a detailed analysis and comparison of the forces acting on
the wing and the propeller is performed.
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Samuelsson (Wind Tunnel) and Stuermer (CFD Comparison)

The origin of the coordinate system
is located on the propeller axis,

1 mm downstream of rear plane of the
spinner

Fig.4 Definition of coordinate system
and nacelle forces and moments
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Figure 4. Installed propeller slipstream development
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Figure 5. Impact of the propeller slipstream on the wing



