Considerations for the Next Revision of STRS

Presented By: Joe Downey

Authors: Sandra K. Johnson, Louis M. Handler, and Janette C. Briones of NASA Glenn Research Center
Agenda

- STRS Overview
- Tenets and Benefits of STRS
- Considered Updates
 - Clarification for STRS Devices
 - Handle Names and IDs
 - STRS Timing
 - Operating Environment Information
 - SDRs without GPMs
 - Cognitive Radio
 - Acquisition Guidance
 - Standardized Platform Services
- Future Work
- STRS Repository Current and Future Submittals
What is STRS?

- Space Telecommunication Radio System
- STRS focus: constrained space environment
- STRS architecture: APIs and open HID and HAL
Tenets and Benefits of STRS

STRS architecture and Standard

- Pre-existing code is available from multiple potential sources.
- Sharing of documentation across projects reduces effort and improves documents and procedures.
- Knowledge Retention across projects improves quality.

Guidance on unique SDR/STRS requirements, development, test approach, and data rights is provided.

Knowledge gained on the unique aspects of procuring SDR platforms and applications can be shared among projects.
Issue: Use of STRS Devices

STRS Device Definition
- Extension of an STRS application with a set of unique (non-STRS standard) APIs
- Proxy for the data and/or control path to the actual hardware.

Discussion:
- Suggestion from commenters: Use standard device APIs to enable device portability across platforms.
- Device portability is not an STRS objective. It may limit platform option and add complexity that might affect performance.

Resolution:
- Add definition and detail in the supporting STRS Handbook, NASA-HDBK-4009, with suggestions that may aid device portability.
- No changes to the STRS architecture.
Issue: Uniqueness and Valid Timeframe of Handle Names and IDs

Handle Names and ID
- Defined with STRS_InstantiateApp()

Discussion:
- Potential problem: reuse of handle IDs for different handle names for different purposes.

Resolution:
- Description field for STRS_InstantiateApp() updated to add: *Configuration file must specify handle names and it must be unique.*
- Section added to STRS Handbook to address suggestion Handle Name time concerns and determination of Handle ID.
Issue: Standardizing Timing Services using STRS Timing APIs

STRS time APIs
- Platform provider determines format and use of time contents needed for time stamps and event coordination.
- Must be defined by the mission.

Discussion:
- Questions arose concerning epoch, timestamps of messages, and use of dependent and independent timers.

Resolution:
- A new integer types will be added to allow for varying lengths for STRS_Seconds and STRS_Nanoseconds with guidance to prevent rollover for missions with a long operational lifetime.
- Recommendations added STRS Handbook about the use of the STRS time APIs and time conversion tool availability.
Issue: Ability of Application to Obtain Operating Environment Information

OE information required by some applications

- Application may need current information about the STRS Operating Environment such as version numbers, active applications, resources used and free, and faults.

Discussion:

- STRS_Query can be used, but without standard handle name and ID for OE, application not portable.

Resolution:

- New requirement to be added to require a standard handle name and handle ID available to obtain run-time details about the OE with STRS_Query.
Issue: Use of STRS in SDRs without General-Purpose Processing Modules

Small SDR platforms rely on external system for general purpose processing
- STRS requires GPM for STRS API implementation.

Discussion:
- Compliant and non-compliant approaches to add STRS functionality suggested.

Resolution:
- This issue will continue to be scrutinized as digital signal processing hardware advances.

Option 1: Distribute functionality
- Compliant with current version of STRS
- Implement STRS OE on the flight computer.
- Adds burden to flight computer and multiple vendor integration.

Option 2: Control the SPM using non-STRS methods
- Increases application portability effort.
- Continues to offer advantages over non-STRS SDRs due to other STRS requirements (HAL, test applications, third party development).

Option 3: Control the SPM via the Application
- SPM respond independently by parsing bits from command stream.
- Same pros/cons as Option 2.
Issue: Implementation of STRS-compliant Cognitive Radio

Cognitive capabilities to be added to future SDRs at NASA
- SDRs ideal platform for implementing autonomous decision making ability.
- STRS has appropriate methods to implement cognition.

Discussion:
- Current STRS architecture adds an “adapter” layer between the application layers and the cognitive engine.

Resolution:
- Concept is currently being studied in a prototype system.

<table>
<thead>
<tr>
<th>WaveformApplications and High Level Services</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSIX API Subset</td>
</tr>
<tr>
<td>STRS API</td>
</tr>
<tr>
<td>STRS Infrastructure</td>
</tr>
<tr>
<td>Network Stack</td>
</tr>
<tr>
<td>OS</td>
</tr>
<tr>
<td>HAL API</td>
</tr>
<tr>
<td>BSP</td>
</tr>
<tr>
<td>GPM</td>
</tr>
<tr>
<td>Drivers</td>
</tr>
<tr>
<td>Specialized HW</td>
</tr>
</tbody>
</table>
Cognitive Radio

- The “adapter” layer in the STRS architecture informs the cognitive engine about the radio environment.
- The cognitive engine can learn autonomously from experience and take appropriate actions to adapt the radio operating characteristics.
- Optimize performance under adverse conditions such as
 - mitigating the effects of unplanned interference,
 - maximize the data throughput,
 - reconfiguring due to propagation effects.
Issue: Capturing Acquisition Guidance

Mission-specific Guidance
- Some requirements are based on mission needs - not part of the STRS Architecture Standard.
- Solution: Write the “STRS Project and Acquisition Guidance” document.

Examples of Content Scope
- Data rights (OE, wrapper, application, documentation, source code).
- Required documentation for SDR procurements.
- STRS-specific needs for projects (training, compliance, development systems).
- Flexible command and telemetry structure.
- Verification and Validation considerations.
- Test waveforms.
Future Work

- Complete updates to identified documents and obtain concurrence. Expected to be completed in FY17.

- Any suggested software changes will be coded and the NASA GRC’s reference implementation will be changed accordingly to assure accuracy.

- Continue to capture Lessons Learned for future updates.

- Infusion to promote STRS for use in future flight hardware missions.

STRS Website
https://strs.grc.nasa.gov
STRS Repository Current and Future Submittals

<table>
<thead>
<tr>
<th>Developer</th>
<th>Waveform/Component Description</th>
<th>Data Rights</th>
<th>Submittal Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>GRC</td>
<td>✓ STRS Compliance Tools</td>
<td>GPR</td>
<td>FY14</td>
</tr>
<tr>
<td>GRC</td>
<td>✓ GRC GSFC TDRSS (GGT) Waveform for JPL SDR</td>
<td>GPR</td>
<td>FY14, FY15, FY16</td>
</tr>
<tr>
<td>GRC</td>
<td>Harris SDR Capture Test Waveform</td>
<td>GPR</td>
<td>FY15</td>
</tr>
<tr>
<td>JPL</td>
<td>✓ Short Blocklength LDPC Codes for SDRs</td>
<td>GPR</td>
<td>FY15</td>
</tr>
<tr>
<td>JPL</td>
<td>✓ General Purpose LDPC Codes for SDRs</td>
<td>GPR</td>
<td>FY15</td>
</tr>
<tr>
<td>GRC</td>
<td>✓ Reconfigurable Bandwidth-Efficient Transmit Waveform for High-rate Telemetry</td>
<td>GPR</td>
<td>FY15/FY16</td>
</tr>
<tr>
<td>JPL</td>
<td>✓ OE & Test Waveform Applications</td>
<td>GPR</td>
<td>FY15/FY16</td>
</tr>
<tr>
<td>GRC</td>
<td>✓ STRS Reference Implementation</td>
<td>GPR</td>
<td>FY16</td>
</tr>
<tr>
<td>GD</td>
<td>Baseline S-band TDRSS waveform software</td>
<td>Limited</td>
<td>FY14</td>
</tr>
<tr>
<td>Harris</td>
<td>Baseline Ka-band TDRSS waveform software</td>
<td>Limited</td>
<td>FY14</td>
</tr>
<tr>
<td>GRC</td>
<td>SNR estimator component</td>
<td>GPR</td>
<td>FY16</td>
</tr>
<tr>
<td>GRC</td>
<td>ACM component</td>
<td>GPR</td>
<td>FY16</td>
</tr>
<tr>
<td>JPL</td>
<td>~15 components and 10 waveforms</td>
<td>GPR</td>
<td>FY15-FY18</td>
</tr>
<tr>
<td>Comm Largo*</td>
<td>Scintillation-Hardened GPS waveform</td>
<td>Open</td>
<td>FY16</td>
</tr>
<tr>
<td>GRC</td>
<td>VCM component</td>
<td>GPR</td>
<td>FY16</td>
</tr>
<tr>
<td>GRC</td>
<td>DVB-S2 waveform</td>
<td>GPR</td>
<td>FY16-FY18</td>
</tr>
<tr>
<td>Virginia Tech</td>
<td>Signal Classification and Interference Mitigation component</td>
<td>GPR</td>
<td>FY16/17</td>
</tr>
<tr>
<td>Worcester Polytechnic</td>
<td>Intelligent Media Access Protocol component</td>
<td>GPR</td>
<td>FY16/17</td>
</tr>
<tr>
<td>GRC</td>
<td>Cognitive Engine on an SDR</td>
<td>GPR</td>
<td>FY17</td>
</tr>
</tbody>
</table>

GPR = Government Purpose Rights
* Additional funding for development needed