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ABSTRACT

This work presents a computationally-efficient inverse
approach to probabilistic damage diagnosis. Given strain
data at a limited number of measurement locations,
Bayesian inference and Markov Chain Monte Carlo
(MCMC) sampling are used to estimate probability dis-
tributions of the unknown location, size, and orientation
of damage. Substantial computational speedup is ob-
tained by replacing a three-dimensional finite element
(FE) model with an efficient surrogate model. The ap-
proach is experimentally validated on cracked test speci-
mens where full field strains are determined using dig-
ital image correlation (DIC). Access to full field DIC
data allows for testing of different hypothetical sensor
arrangements, facilitating the study of strain-based di-
agnosis effectiveness as the distance between damage
and measurement locations increases. The ability of the
framework to effectively perform both probabilistic dam-
age localization and characterization in cracked plates is
demonstrated and the impact of measurement location on
uncertainty in the predictions is shown. Furthermore, the
analysis time to produce these predictions is orders of
magnitude less than a baseline Bayesian approach with
the FE method by utilizing surrogate modeling and ef-
fective numerical sampling approaches.

1. INTRODUCTION

Structural health monitoring (SHM) is the driving
technology behind the transition from time-based to
condition-based maintenance. Motivated by both safety
and economic drivers, this paradigm shift from offline
inspection to online (i.e., while operating) monitoring is
critically important to industries including manufactur-
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ing, aerospace, and defense that seek to detect damage
in structural and mechanical systems at the earliest pos-
sible time. While SHM is in the process of making the
transition into the application domain, the evolution of
the technology to enable damage prognosis to forecast
residual life has very few deployed applications (Farrar
& Worden, 2013). As damage prognosis is inherently
probabilistic in nature and presumes a properly charac-
terized initial damage state, its practical use is predicated
on not just the detection and localization of damage from
SHM, but on a thorough assessment of the extent of the
damage along with rigorous uncertainty quantification
(UQ).

In order to deliver a more comprehensive online health
management system for practical use, a SHM system
should possess several key characteristics to enable inte-
gration with damage prognosis. Since an explicit quan-
tification of damage is required for prognosis, model-
based (inverse problem) SHM is preferred to a data-
based approach since the latter is generally limited to
detection and localization in the absence of training data
from damage states (Barthorpe, 2010). In this case, high-
fidelity modeling (e.g., finite element analysis) is needed
to allow for arbitrary geometries and damage types to be
considered (limited only by sensitivity of sensors to the
damage indices). The damage diagnosis approach must
also effectively incorporate UQ to facilitate probabilis-
tic prognostics rather than providing only deterministic
assessments. Finally, in order to make online applica-
tion of the framework feasible, the algorithms deployed
must also be computationally-efficient. Unfortunately,
model-based SHM with high-fidelity modeling implies
time-consuming simulations and UQ often requires tens
of thousands of such analyses, so achieving such an all-
encompassing SHM framework is extremely challeng-
ing.

Traditionally, damage detection techniques have largely
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been deterministic in nature and have identified struc-
tural anomalies based on changes in measured mechani-
cal response (e.g., vibrations (Kim & Stubbs, 2002; Mal,
Ricci, Banerjee, & Shih, 2005), ultrasonic wave charac-
teristics (Wang & Yuan, 2007; Kehlenbach & Hanselka,
2003), and strains (Krishnamurthy & Gallegos, 2011;
Hochhalter, Krishnamurthy, Aguilo, & Gallegos, 2016)).
While deterministic approaches have been successfully
used to accurately locate and sometimes quantify dam-
age in a computationally-efficient manner, these meth-
ods neglect the impact of uncertainty that is ubiquitous
in real SHM systems due to effects such as sensor noise
and modeling assumptions.

More recently, there has been increased focus on un-
certainty quantification for damage diagnosis using
Bayesian inference in order to explicitly account for
measurement and model uncertainties in practice. Sev-
eral studies (Moore, Murphy, & Nichols, 2011; Nichols,
Link, Murphy, & Olson, 2010; Huhtala & Bossuyt,
2011) have used noisy vibrations data to detect structural
damage, while in one such study (Nichols, Moore, &
Murphy, 2011), the emphasis was on the development of
an efficient numerical sampling algorithm for exploring
the resulting probability distribution. A Bayesian imag-
ing method was developed in (Peng, Saxena, Goebel,
Xiang, & Liu, 2014) to probabilistically estimate delam-
ination location and size in composite laminates using
Lamb wave measurements. The work of (Yan, 2012)
used Bayesian inference and the extended finite element
method to inversely estimate the probability distribu-
tion of crack location and size using strain data. Most
recently, (Prudencio, Bauman, Faghihi, Ravi-Chandar,
& Oden, 2015) used displacement data to estimate the
parameters of a continuum mechanics model within a
Bayesian framework and used Kalman filters to update
and evolve the system state in time.

Compared to deterministic methods, Bayesian ap-
proaches have the advantage of quantifying uncertainty
in the estimates provided, but also incur a substantial
computational penalty. Here, the computational expense
results from the numerical sampling algorithms, e.g.,
Markov Chain Monte Carlo (MCMC) (Gamerman &
Lopes, 2006), which can exhibit slow convergence and
involve the evaluation of a potentially time-consuming
computational model for each sample drawn. To al-
leviate this computational burden, advanced MCMC
methods have been developed to reduce sampling time
by improving sampling convergence (Haario, Laine, &
Mira, 2006; Nichols et al., 2011) or through paralleliza-
tion of the algorithms themselves (Vrugt et al., 2009;

Neiswanger & Xing, 2013; Prudencio & Cheung, 2012).
Another common approach is to replace the original
physics-based model with a computationally-efficient
surrogate model using probabilistic spectral methods
(Marzouk, Najm, & Rahn, 2006) or machine learning
algorithms (Meeds & Welling, 2014).

The development of Bayesian inference approaches in
conjunction with advanced MCMC methods and sur-
rogate modeling remains relatively limited for model-
based SHM applications. However, machine learn-
ing trained using physics-based models has been ex-
plored for efficient diagnosis. The works in (Katsikeros
& Labeas, 2009; Sbarufatti, Manes, & Giglio, 2013)
have demonstrated the use of artificial neural networks
(ANNs) to build the inverse-maps directly from mea-
sured strains to crack location and length for rapid dam-
age diagnosis. Most notably, (Sbarufatti et al., 2013)
provided a comprehensive experimental validation of the
SHM framework in a simplified structure resembling a
helicopter fuselage, demonstrating the ability to effec-
tively perform anomaly detection as well as damage lo-
calization and quantification. The uncertainty quantifica-
tion effort, however, was limited to confidence intervals
based off the scatter in predictions from various ANNs.

Motivated by online, integrated SHM and damage prog-
nosis, this study presents a computationally-efficient ap-
proach to probabilistic, strain-based damage diagnosis
and the extension and experimental validation of the pre-
liminary work done in (Warner & Hochhalter, 2016).
Probability distributions for unknown damage are in-
ferred with Bayesian inference. A surrogate model
trained via three-dimensional (3D) finite element model-
ing and an efficient MCMC approach is used to provide
substantial computational speedup. While the frame-
work is applicable to arbitrary component geometries
and damage parameterizations as well as different sensor
types, it is demonstrated on the problem of crack char-
acterization in thin plates using measured strains. Ex-
perimental validation is carried out using digital image
correlation (DIC) (Peters & Ranson, 1982) strain data in
two cracked lab specimens. Access to full field DIC data
facilitates the study of the effectiveness of strain-based
diagnosis as the distance between the locations of dam-
age and strain measurements is varied.

The remainder of the paper is organized as follows.
First, a complete formulation of the proposed damage
diagnosis approach is provided in the following sec-
tion, with individual subsections devoted to the Bayesian
formulation, surrogate modeling, and the MCMC sam-
pling method used. Next, experimental validation of the
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method is provided. In this section, the experimental
strain data obtained with digital image correlation, the
development and performance of the surrogate models
used, and results of the damage diagnosis method applied
to both damage localization and characterization in two
separate cracked lab specimens are presented. Finally,
the findings of the study are summarized in the conclu-
sion section.

2. FORMULATION

In this section, the proposed approach to probabilistic
damage diagnosis using measured strains is presented.
Bayesian inference is used to deduce the probability dis-
tribution of the unknown crack parameters conditional on
the available strain data and Markov Chain Monte Carlo
(MCMC) sampling is employed to explore the resulting
distribution. Surrogate modeling is used to replace the
computational mechanics model with a more efficient
data-driven model to provide computational speedup in
the approach. These points are elaborated on in detail in
the subsequent subsections.

2.1. Preliminaries

In this study, the description of damage considered
is a four-dimensional array of unknowns describing a
straight crack in a panel under a prescribed displacement
∆u (Figure 1)

C = [x, y, a, θ], (1)

where (x, y) denotes the coordinates of the center of the
crack and a and θ denote the crack length and orientation
(i.e., angle with respect to the x-axis), respectively. The
measurement data used to inversely estimate the crack
parameters are an array ofm strains recorded throughout
the domain

D = {Ŝi}mi=1 (2)

where Ŝi is the ith strain measurement. Note that Ŝi

can represent any one of the surface strain components
{ε̂xx, ε̂yy, γ̂xy} and multiple components can typically
be measured at each sensor location.

The feasibility of strain-based diagnosis is predicated on
the availability of a modelM (e.g., finite element anal-
ysis) with adequate predictive capabilities of strains {S}
in a component with an arbitrary crack C

{Si}mi=1 =M(C). (3)

Here, it is assumed that there is a one-to-one correspon-
dence between the computed strain array {S} and mea-
surement data {Ŝ} through appropriate postprocessing
of the model results. It is further assumed that this model
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Figure 1. Diagram of the problem domain and crack pa-
rameterization considered for damage diagnosis.

has been appropriately calibrated and encompasses the
appropriate geometry, boundary conditions, and material
parameters for the component being analyzed, e.g., the
only variables changing during each new evaluation are
the crack parameters.

LettingMi (C) ≡ Si, the following error metric between
the measured strain data and corresponding computed
strains can be defined as

Q(C) =

m∑
i=1

‖Ŝi −Mi(C)‖2 (4)

where a lower value of Q(C) ideally indicates a current
estimate of C that is near the true crack that resulted in
the measurement data D. In this way, a typical deter-
ministic model-based SHM approach (Krishnamurthy &
Gallegos, 2011; Hochhalter et al., 2016) estimates C by
minimizing Equation 4 using gradient-based or global
optimization techniques, the so-called least squares es-
timator

CLS = arg min
C

Q(C) (5)

The primary drawback from such deterministic methods
for diagnosis and inverse problems in general is that CLS

provides only a point estimate of the unknowns without
rigorously quantifying the impact of model and measure-
ment uncertainties. A suitable regularization strategy
must also be chosen and tuned in an effort to rectify the
well known ill-posedness of the inverse problem (Isakov,
1998) (e.g., infinitely many solutions may exist).

3



2.2. Bayesian Inference

In the Bayesian inference approach to damage diagnosis
used herein, the objective is to formulate the probability
distribution of the unknown crack parameters C condi-
tional on the measured strain dataset D. This probability
distribution p(C|D), referred to as the posterior proba-
bility density function, is given according to Bayes’ for-
mula:

p(C|D) =
p(D|C)p(C)

p(D)
(6)

which combines any a priori knowledge of the crack pa-
rameters through a prior density function p(C) with the
information provided by the measurement data through
the likelihood function p(D|C). The normalizing con-
stant, p(D), is not required for numerical exploration of
the posterior probability and so Equation (6) can be ex-
pressed as

p(C|D) ∝ p(D|C)p(C) (7)

The prior density function p(C) can be a powerful tool for
inserting an analyst’s practical insight into the Bayesian
inference approach. For example, identification of ”hot
spots” and stress concentrations can provide information
on expected damage location, prognostic tools can yield
estimates of future anticipated crack length, and engi-
neering judgement can determine the likely orientation
of a crack given the load state. From a mathematical
point of view, prescribing such an informative prior den-
sity function p(C) provides a means to regularize the in-
verse problem. In the absence of any reliable a priori
knowledge, however, a non-informative (e.g., uniform
probability) prior density function can be chosen as to
avoid any inaccurate biasing of the predictions.

The likelihood function p(D|C) models the discrepancy
between the measured strain data and the corresponding
values computed with the model. To obtain an expres-
sion for p(D|C), the following common assumption is
made on the relationship between measured and com-
puted strains

Ŝi =Mi(C) + δi, δi ∼ N(0, σ) (8)

That is, the measurement data are polluted with errors
δi that are treated as a sequence of independent, iden-
tically distributed (iid) samples drawn from a zero-mean
Gaussian distribution with variance σ2 (interpreted as the
noise level). The iid assumption yields the following ex-

pression for likelihood function

p(D|C) =

m∏
i=1

p(Ŝi|C)

=
1

(2πσ2)m/2
exp

(
− 1

2σ2
Q(C)

)
(9)

Here, it is clear that as the error between computed and
measured strains (Equation (4)) increases, the value of
the likelihood function (and hence posterior probability
in Equation (7)) decreases and vice versa. The rate of
increase/decrease in probability here is governed by σ2.

An advantage of adopting a Bayesian approach to dam-
age diagnosis is its inherent flexibility for modeling and
inferring additional system parameters which may be dif-
ficult to prescribe a priori with sufficient certainty. In
this work, this capability is demonstrated for the noise
level parameter σ2 as well as the applied displacement
∆u. Using the product probability law (i.e., P (A|B) =
P (A,B)P (B)), the posterior probability distribution (7)
can be modified to include the noise level

p(C, σ2|D) ∝ p(D|C, σ2)p(C)p(σ2) (10)

or the prescribed displacement

p(C,∆u|D) ∝ p(D|C,∆u)p(C)p(∆u). (11)

For Equations 10 and 11, the prior distributions p(σ2)
and p(∆u) are introduced to complete the formulation.
Note that the common choice for p(σ2), also adopted in
this work, is the use of the inverse-gamma distribution.
For the Gaussian noise assumption made in Equation
8, the inverse-gamma distribution for p(σ2) represents a
conjugate prior which has algorithmic benefits for sub-
sequent MCMC sampling (see (Nichols et al., 2010) for
more details). While a uniform distribution is chosen in
this work for p(∆u), it is conceivable that a more infor-
mative prior distribution could be generated in practice
through load monitoring.

Note that when ∆u is treated as unknown, this parame-
ter effectively appears as an additional input to the model
in Equation 3 (i.e., M(C,∆u)). Since linear elastic FE
modeling is considered, however, the strains at the sen-
sors for any new prescribed displacements ∆u∗ can be
obtained by simply scaling previously computed model
values

M(C,∆u∗) =

(
∆u∗

∆u

)
M(C,∆u). (12)

This approach significantly reduces the computational
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cost of the surrogate modeling and sampling processes to
follow when considering an unknown applied displace-
ment.

2.3. Surrogate Modeling

Surrogate modeling relies on the (offline) pre-
computation and storage of input-output pair datasets
from an original computational model in an effort to
replace it during (online) analysis by a more efficient
data-driven model. The approach is highly effective
in reducing analysis times for Bayesian inference ap-
proaches that require repeated evaluation of compu-
tationally intensive models (Meeds & Welling, 2014;
Warner & Hochhalter, 2016). Furthermore, with a
sufficient amount of pre-computed data and an effec-
tive regression/interpolation algorithm, a high degree
of accuracy with respect to the original model can be
maintained.

In the strain-based damage diagnosis application consid-
ered here, a set of T crack parameter arrays {C(k)}Tk=1

is first selected. Then, the model strains corresponding
to all m measurement data (Equation (3)) are computed
and stored for each predefined crack

M(k)
j ≡Mj(C(k)), k = 1, ..., T (13)

for j = 1, ...,m. The result is the following T × (d+m)
input-output dataset

S = {C(k);M(k)
1 , ...,M(k)

m }Tk=1, (14)

The objective of surrogate modeling is to now utilize the
data S to predict the value of strains for new crack pa-
rameters C∗ /∈ S without requiring an additional evalu-
ation of the original model M. From a machine learn-
ing perspective, S is the training data and a variety of
off-the-shelf regression and interpolation algorithms can
be utilized to directly infer the input-output mappings.
These algorithms, appropriately trained with the data S,
form the surrogate models

M̃j : C →Mj for j = 1, ...,m (15)

which can be used to replace the original model in the
posterior probability distribution (Equation (7)).

A couple of remarks about the surrogate modeling pro-
cess are worth noting. First, the size T of the training
data set has a lower limit based on accuracy require-
ments and a practical upper limit based on the compu-
tational expense of the original model M, the compu-
tational resources available, and the training complexity

and memory requirements of the regression/interpolation
algorithm used. In this work, a testing data set Ŝ of ran-
domly generated points

Ŝ = {Ĉ(n);M̂(n)
1 , ...,M̂(n)

m }Pn=1, (16)

is used to evaluate surrogate model accuracy for both dif-
ferent training dataset sizes and different learning algo-
rithms. The assessment is based on the relative error be-
tween the surrogate and original models when predicting
the test data

∆j =
1

P

P∑
n=1

|M̃j(Ĉ(n))− M̂(n)
j |

|M̂(n)
j |

(17)

It is also worth pointing out that the T model evalua-
tions and the training of the m surrogate models is an of-
fline cost associated with the diagnosis framework. That
is, the computational burden of generating the surro-
gate models is a single upfront cost that then permits
an arbitrary number of efficient damage diagnoses to be
conducted by rapidly evaluating M̃j during the analy-
ses. Furthermore, the T executions of the finite element
method (FEM) simulation are completely independent of
each other, and can therefore be run in parallel on as
many computer processors as are available.

2.4. Markov Chain Monte Carlo Sampling

In the Bayesian inference approach to inverse problems,
Markov Chain Monte Carlo (MCMC) (Gelman et al.,
2013) sampling methods are the common choice for ex-
ploring the resulting posterior probability distribution
(Equation (7)). MCMC generates iid samples from a
target probability distribution by constructing a Markov
chain that, by design, is guaranteed to have a station-
ary distribution that matches that of the target. For the
damage diagnosis framework here, N samples of the un-
known crack parameters C are drawn from the posterior
probability distribution p(C|D) using MCMC which can
then be used to construct empirical probability distribu-
tions, creditability intervals, and moment estimates for
C.

Algorithm 1 summarizes the most basic form of MCMC,
the Metropolis algorithm (Gamerman & Lopes, 2006).
Here, the method simply draws a trial sample Ct at
each iteration from a proposal distribution q(Ct|C(j−1)),
and then decides whether to accept or reject this sample
based on the acceptance probability, A(Ct, C(j−1)). The
Metropolis algorithm assumes that the proposal distribu-
tion is symmetric, where a common choice is a Gaussian
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Algorithm 1 The Metropolis MCMC Algorithm

Initialize C(0)
for j = 1 : N do

Sample u ∼ Uniform(0, 1)
Sample Ct ∼ q(Ct|C(j−1))
if u < A(Ct, C(j−1)) = min{1, p(Ct|D)

p(C(j−1)|D)
} then

C(j) = Ct
else
C(j) = C(j−1)

end if
end for

distribution centered at the previous sample

q(Ct|C(j−1)) = N(C(j−1),Σq) (18)

where Σq is the user-specified covariance matrix.

While the Metropolis algorithm is straightforward to im-
plement, tuning of the algorithm (namely, the selection
of an appropriate Σq) for efficient convergence and ap-
propriate sample acceptance rate is notoriously difficult
(Gamerman & Lopes, 2006) . Moreover, the posterior
probability distributions formulated with Bayesian infer-
ence are often multimodal and grow in complexity with
the number of unknown parameters. As such, it can take
an extremely large number of samples to sufficiently ex-
plore the posterior probability distribution in addition to
a lengthy initial burn-in period to allow the Markov chain
to reach its stationary distribution.

In an effort to overcome these difficulties, the Delayed-
Rejection Adaptive Metropolis Algorithm (DRAM)
(Haario et al., 2006) is adopted in this work to sample
the posterior probability distribution (Equation (7)) more
effectively. The adaptive component of the algorithm
allows for online tuning of Σq based on past samples to
better reflect the target probability distribution. Delayed
rejection allows for multiple stages of proposal samples
at each iteration, which can help explore multimodal dis-
tributions more effectively by taking bolder (i.e., larger)
proposal steps in the initial stage followed by a more
conservative step with a higher likelihood of acceptance.
The reader is referred to (Haario et al., 2006) for more
details on the DRAM algorithm.

While the DRAM algorithm can provide improved con-
vergence of the sampling process, a poor initial guess
C(0) for the algorithm can still result in a time-consuming
burn-in period, limiting it’s effectiveness. In this work,
a simple enhancement is introduced that utilizes the pre-
viously stored surrogate model training data to generate
the initial guess in a high probability region of the poste-

rior distribution, effectively reducing the required burn-
in period. As a preprocessing step for the damage diag-
nosis process, the least squares estimator (Equation (4))
is computed over the surrogate model training data set
(Equation (14)) as the initial guess for MCMC

C(0) = arg min
C∈S

Q(C) (19)

By only considering the precomputed training grid val-
ues, this computation can be done rapidly as it does not
require any additional model evaluations. While mul-
timodal distributions may still pose a challenge, Equa-
tion (19) is a simple and systematic way to generate a
good starting point for the DRAM algorithm and can
help yield shorter burn-in periods.

Note that while strain-based crack identification is the fo-
cus of the current study, the approach formulated herein
is general for C, D, M, and M̃. The primary assump-
tion that must hold when substituting components in the
framework is the availability of a computational model
with adequate predictive capability of the measured data
after appropriate calibration. Note that in practice, how-
ever, higher order descriptions of damage will be limited
by the sensitivity of the additional parameters to the mea-
sured quantity used for diagnosis.

3. EXPERIMENTAL VALIDATION

The implementation of the Bayesian damage diagnosis
framework, including surrogate model development and
MCMC sampling, was carried out in Python (Python
Software Foundation, 2016). The performance of the
framework through experimental validation is now
demonstrated. A description of the strain measure-
ment data acquired for diagnosis is provided followed by
the development and validation of the surrogate models
used. Next, the diagnosis framework is applied to one
example of damage localization followed by another
demonstrating general damage characterization (loca-
tion, size, orientation) in thin metal sheets. Finally, the
impact of specifying informative prior distributions with
the Bayesian framework as well as its ability to infer an
unknown prescribed displacement during diagnosis is
illustrated.

3.1. DIC Strain Data

Two cracked thin sheet specimens of Aluminum Al-
loy 2024 (AA2024) were considered for experimen-
tal validation of the diagnosis framework, one with
a flat crack (i.e., oriented 0◦ from the x axis) used
to test damage localization and the other with an an-
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gled crack to test full crack characterization. Full
field strain data was acquired with digital image cor-
relation (DIC) using the VIC3D (Correlated Solu-
tions Inc., 2012) software. The width and height of
the specimens were 3.93in and 8.73in, respectively.
The crack parameters were [xflat, yflat, aflat, θflat] =
[1.81in, 4.53in, 0.67in, 0rad] for the flat crack
specimen and [xangled, yangled, aangled, θangled] =
[1.83in, 4.29in, 0.78in,−0.82rad] for the angled crack
specimen. The strain fields recorded with DIC are dis-
played in Figure 2, showing the εXX and εY Y strain
components for both test specimens. Note that the εXY

component of strain was not considered as measurement
data for diagnosis in this study.

The motivation behind gathering full field strain data
using DIC was that measurement (“sensor”) locations
could be freely chosen in order to test the diagnosis ac-
curacy as the distance between the measured data and
damage was varied. Four different sensor arrangements
were tested in the diagnosis examples to follow, shown in
Figure 3 along with the two crack configurations consid-
ered. Each arrangement was composed of two separate
horizontal arrays of sensors with increasing distance be-
tween them ( 1.47”, 3.25”, 5.02”, and 6.79”). Fourteen
measurement locations with two recorded strain compo-
nents per location were considered (m = 24) for each
sensor arrangement.

The software used for FE modeling in this study was the
Scalable Implementation of Finite Elements by NASA
(ScIFEN) (Warner, Bomarito, Heber, & Hochhalter,
2016) parallel FE code. A Young’s Modulus E =
10.6Msi and a Poisson’s ratio ν = 0.33 for AA2024
were considered known and deterministic. A simple cal-
ibration of the FE model to the DIC data was performed
by treating the prescribed displacement ∆u as the sin-
gle free parameter. For each test specimen, the measured
crack parameters were inserted into the FE model and
∆u was adjusted such that the far field value of εY Y at a
location sufficiently far from the damage (≈ 1 in. from
the upper boundary) agreed between the model and the
DIC data. The resulting values for ∆u for the flat and
angled crack specimens were 0.028in and 0.032in, re-
spectively.

To gauge the error/noise level between the calibrated
FEM model and the DIC data, the strains were com-
pared on a grid of 325 points throughout the domain.
The distribution of absolute errors between FEM and
DIC strains are shown in Figure 4 for the flat (a) and
angled (b) crack specimens along with a fitted Gaussian
distribution to the errors. The Gaussian noise model used

in Equation 8 is shown to be a reasonably accurate as-
sumption, more so for the flat crack specimen. The FE
model predictions show a positive bias for the angled
crack specimen strains, which could be a result of the
simplified calibration procedure used. Note that the em-
pirical standard deviations noted in Figures 4(a) and 4(b)
will be used to prescribe the variance parameter σ2 dur-
ing the Bayesian diagnosis process in the experimental
validation study to follow.

3.2. Surrogate Model Development

Two separate sets of surrogate models were developed
for the flat crack and angled crack specimen since the for-
mer was used to demonstrate damage localization (Cflat =
[x, y] ∈ R2, with a = 0.67in and θ = 0rad) while the
latter was used for full crack characterization (Cangled =
[x, y, a, θ] ∈ R4). For both specimens, surrogate mod-
els were constructed and stored for each measurement
in the sensor arrays considered (Figure 3) that were ca-
pable of mapping new values of Cflat and Cangled directly
to the resulting strain (Equation 15). Several different
machine learning algorithms from the scikit-learn
(Buitinck et al., 2013) and SciPy (Jones, Oliphant, Pe-
terson, et al., 2001–) Python modules were compared to
obtain a surrogate model with an optimal balance of pre-
diction accuracy and efficiency.

First, training datasets S (Equation 14) were generated
using the ScIFEN FE code according to Equation 13. For
the case of damage localization in the flat crack speci-
men, several uniform training grids {C(k)flat }Tk=1 were con-
sidered from T = 450 to T = 5000 to study the accuracy
and efficiency of the machine learning algorithms for in-
creasing training data size. Only one training grid with
T = 32076 was generated for the angled crack specimen
due to the added computational expense of the increased
dimension of the input space d = 2 to d = 4. Ad-
ditionally, two test datasets Ŝ (Equation 16) were gen-
erated from 500 and 1000 randomly selected values of
Cflat and Cangled, respectively, to verify the accuracy of the
trained surrogate models. The bounds for the parameters
for training and testing were specified as

x ∈ [0.64, 3.18]in (20)
y ∈ [0.64, 7.94]in (21)
a ∈ [0.20, 1.19]in (22)
θ ∈ [−π/2, π/2]rad (23)

where the bounds for x, y, and a were chosen such that
the entire crack would always be contained within the
geometry (i.e., edge cracks were not considered).
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Figure 2. DIC strain data for flat and angled crack specimens: (a) εXX and (b) εY Y for the flat crack specimen, and
(c) εXX and (d) εY Y for the angled crack specimen.
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Figure 4. Histogram of errors between DIC and FE
strains with fitted Gaussian distributions, for the a) flat
and b) angled crack specimen.

Four separate FE simulations were run simultaneously to
generate the training and testing datasets with each indi-
vidual simulation run in parallel on four processors, for a
total of 16 processors used. The CPU times for each FE
model execution varied between 25 and 45 seconds de-
pending on the crack geometry and computational mesh,
resulting in a total run time of approximately 5 days to
generate all necessary data for surrogate model develop-
ment.

Surrogate models for the flat crack specimen were gen-
erated using linear regression, nearest neighbors, and
Gaussian process algorithms from scikit-learn and
a multi-linear interpolation algorithm from SciPy. Free
parameters for the nearest neighbors and Gaussian pro-
cess models were tuned using cross-validation. A com-
parison of algorithm performance for increasing training
dataset sizes is shown in Figure 5. Figure 5(a) shows the
average relative error over the testing dataset (Equation
17) while Figures 5(b) and 5(c) compares the training
and prediction times for the different models tested, re-
spectively.

The linear regression models performed most poorly
both in terms of accuracy and prediction times, which
are the most important metrics for online analysis (sur-
rogate model training is considered an off-line cost of
the framework). While the remaining three algorithms
showed comparable accuracy in predicting the test data
(all near or below 1% average error for T = 5000),
the linear interpolation models were significantly faster
in terms of prediction efficiency. The nearest neighbor
models, however, demonstrate significantly lower train-
ing times and near-constant scaling of prediction times
with respect to dataset size, indicating that they excel
when a large amount of training data are used. Note
that all algorithms exhibit prediction times that are or-
ders of magnitude faster than computing the strains using
FE simulation. Based on the overall performance in Fig-
ure 5, however, the linear interpolation surrogate models
were chosen for the damage localization study in the flat
crack specimen.

For the angled crack specimen, only the nearest neigh-
bor and linear interpolation approaches were considered
due to the poor accuracy of the linear regression models
and the lengthy training times of the Gaussian process
models for larger training datasets observed in Figure 5.
The performance of the algorithms in terms of accuracy
and efficiency is displayed in Table 1. The linear inter-
polation models have slightly less error in predicting the
testing data but scale significantly worse in terms of pre-
diction and training times to higher dimensional inputs
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Figure 5. Performance comparison of four different surrogate modeling algorithms for the damage localization prob-
lem in terms of a) relative error, b) training time, and c) prediction time.
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(d = 4) and larger amounts of training data. Based on
the difference of over two orders of magnitude in predic-
tion times and comparable accuracy, the nearest neigh-
bor models are selected over linear interpolation for the
general crack characterization study in the angled crack
specimen.

3.3. Damage Localization

The Bayesian damage diagnosis framework was first ap-
plied to the problem of damage localization in the flat
crack specimen. The DRAM MCMC algorithm de-
scribed in Section 2.4 was implemented in Python to
sample the posterior probability distribution p(C|D) and
estimate Cflat. Two cases were considered: 1) a pre-
scribed noise level using the posterior distribution in
Equation 7 with σ2 estimated from Figure 4(a), and 2)
an inferred noise level using the form of posterior dis-
tribution in Equation 10, estimating σ2 during the sam-
pling process. A uniform distribution was used for the
prior probability p(C), simply enforcing the bounds in
Equations 20 - 21 (i.e., 0 probability if either parameter
falls outside the bounds in a given sample). The linear
interpolation surrogate models described in the previous
section were used to accelerate the evaluation of p(C|D)
during sampling. DIC strain data from each of the four
sensor arrays in Figure 3 were tested individually to com-
pare the impact of measurement location on the resulting
damage location estimates.

For all of the damage diagnosis results presented in this
study, 11000 total samples were drawn using the DRAM
algorithm. The first 1000 samples were discarded for the
burn-in period after which a thinning interval of 10 was
applied to reduce autocorrelation, yielding 1000 samples
to produce estimates of damage location probability. Ini-
tial guesses for sampling were generated automatically
using the approach indicated in Equation 19. The ini-
tial covariance matrix Σq for the proposal distribution
(Equation 18) was chosen such that the variance for each
parameter was 10% of its corresponding bounds in Equa-
tions 20 - 23, after which it was adapted during sampling
according to the DRAM algorithm. The sample accep-
tance rate for the damage localization results presented
in this section was between 54.4% and 58.6% while the
average solution time for all cases was just 13.5 seconds.

Figure 6 shows the resulting crack location probability
contours in the case of prescribed noise level σ2 for each
of the sensor arrays. It can be seen that sensor array
1 6(a), which is closest to the crack, provides an accu-
rate estimate of the true crack location with high cer-
tainty. The accuracy of the estimates (the agreement be-

tween the true crack and highest estimated probability)
decrease with increasing distance between the sensor ar-
rays used, as expected. The Bayesian diagnosis frame-
work effectively captures the growing uncertainty in es-
timates, however, as indicated by the growing spread in
the probability distributions. Furthermore, even the prob-
ability distribution produced by 6(d), which is farthest
from the crack, has a mode which is reasonably close to
the true crack location, albeit with a high degree of un-
certainty.

The difference in performance between using a pre-
scribed versus inferred noise level σ2 during diagnosis
can be seen in Figure 7, showing the marginal probabil-
ity distributions of the x and y coordinates of crack loca-
tion for each case. While the accuracy is comparable in
each case, the uncertainty appears to be underestimated
when inferring σ2 during the sampling process. This can
be noted from the decreased spread in probability in Fig-
ures 7(b) and 7(d). More specifically, the mean estimates
for σ2 obtained from DRAM for sensor arrays 1-4 were
[1.41 × 10−8, 6.77 × 10−9, 6.77 × 10−9, 1.33 × 10−8]
compared to the prescribed value of 2.71×10−8 obtained
by comparing the FE and DIC strains directly. As ob-
served previously in Figure 6, the increase in uncertainty
and decrease in accuracy is clearly shown again in Figure
7 as the distance between sensors increases from array 1
to array 4.

3.4. General Crack Characterization

The performance of the proposed diagnosis framework is
now illustrated for general crack characterization in the
angled crack specimen. That is, the probability distri-
bution p(Cangled|D) = p(x, y, a, θ|D) for unknown crack
location, size, and orientation was estimated using each
sensor array of DIC strains in Figure 3. Again, both
the prescribed and inferred noise level cases were tested
where the prescribed value of σ2 was estimated from
Figure 4(b). Nearest neighbor surrogate models were
used to accelerate the sampling process for crack char-
acterization following the developments in Section 3.2.
The DRAM sampling parameters remained unchanged
from those provided for the damage localization results
in the previous section and a uniform distribution was
used again for the prior probability p(C). The sample
acceptance rate for the results to follow was between
35.7% and 53.7% for all cases while the average solu-
tion time was 64.4 seconds. Note the slower execution
time versus damage localization is a result of an increase
in prediction time of the nearest neighbor surrogate mod-
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Method Relative Error Training Time Prediction Time
Nearest Neighbors 3.84% 3.80e-2 sec 1.38e-4 sec

Linear Interpolation 2.89% 76.5 sec 2.15e-2 sec

Table 1. Performance comparison for the full damage characterization surrogate models.
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Figure 6. Crack location probability contours using the different sensor arrays from Figure 3 (denoted by white circles).

els trained with a larger training dataset and higher input
dimension.

The results for general crack characterization for both
the prescribed and inferred noise level cases using each
of the four sensor arrays considered are shown in Fig-
ure 8. Here, the estimated marginal probability distribu-
tions for x, y, a, and θ are displayed along with the true
values of these parameters from the angled crack spec-
imen. Again, the trend of decreasing accuracy and in-
creasing uncertainty is observed with increasing distance
between sensor arrays used for diagnosis. The results for
the case of prescribed noise level are more accurate and
the uncertainty tends to be slightly underestimated with
the noise level is inferred during sampling. In particu-
lar, the estimated marginal distributions produced using
sensor arrays 1 and 2 (closest to the damage) generally
have probability modes that are near the true values of
the crack parameters with relatively low uncertainty. On
the other hand, for the inferred noise case and measured
strains from sensor arrays 3 and 4 (farthest from the dam-
age), the framework prescribes relatively low probability
to the true parameter values. Viewing the relatively lo-
calized nature of the damage effects on the strain fields
in Figure 2 and the locations of sensor arrays 3 and 4
in Figure 3, it can be inferred that there is not an ad-

equate level of information in the measurement data to
accurately infer the damage parameters in these cases.

3.4.1. Informative Prior Distributions

The damage diagnosis results presented so far have as-
sumed uniform (i.e., non-informative) prior probabilities
p(C) to provide an unbiased presentation of the frame-
work. However, a primary strength of the Bayesian ap-
proach in practice is the ability to factor in engineering
judgement and expert opinion during the inference pro-
cess. This section briefly illustrates the impact of provid-
ing an informative prior probability distribution for the
unknown parameters during crack characterization.

For the purposes of demonstration, a multivariate Gaus-
sian prior distribution centered at the initial guess calcu-
lated using Equation 19 is chosen

p(C) = N(C(0), γdiag(C(0))) (24)

where γ is a scaling factor controlling the amount of vari-
ance. This choice of prior effectively represents an in-
ference approach that is a balance between deterministic
least squares (Equation 5) and probabilistic Bayesian so-
lutions where an emphasis between one or the other is
controlled by γ. Note that in practice, p(C) would be
based on some a priori intuition about the nature of ex-
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Figure 7. Marginal probability distributions of the x and y coordinates of crack location using a prescribed versus
inferred noise level σ2.
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Figure 8. Marginal probability distributions of the crack parameters for the angled crack specimen using a prescribed
versus inferred noise level σ2.
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pected damage and independent of the measurement data
D. Equation 24 is chosen here out of convenience and to
simply demonstrate the prior probability modeling mech-
anism.

The DRAM sampling algorithm is used to sample the
posterior probability distribution in Equation 7 with pre-
scribed noise level, using the prior distribution in Equa-
tion 24 with γ = 0.2 and strain data from sensor ar-
ray 3 (Figure 3). The resulting marginal distributions of
the crack parameters are displayed in Figure 9, showing
the prior probability, likelihood, and posterior distribu-
tion for each parameter. Note here that the likelihood
is simply the posterior distribution from Figure 8 since
these distributions are equivalent when using a uniform
prior distribution. The effect on the resulting posterior
distributions from prescribing an informative prior dis-
tribution is clear, where the impact is larger for the dis-
tributions of a and θ which were originally less accurate
and more uncertain than x and y. The resulting crack pa-
rameter distributions are visibly a synthesis of the infor-
mation provided individually by the likelihood and pre-
scribed priors, which in this case yields more accurate
estimates with less uncertainty. While this is a relatively
contrived use case, the potential impact of incorporating
a prior knowledge or assumptions through prior distri-
butions with the Bayesian framework is apparent.

3.4.2. Unknown Boundary Condition

The ability of the Bayesian damage diagnosis framework
to treat the prescribed displacement ∆u as an additional
unknown parameter is now briefly demonstrated. While
the previous results have prescribed deterministic values
for ∆u based on the calibration described in Section 3.1,
here its probability distribution is simultaneously esti-
mated during diagnosis by sampling the modified pos-
terior distribution in Equation 11. Damage diagnosis is
carried out using sensor arrays 1 and 2 (Figure 3) with
uniform distributions assumed for p(C) and p(∆u).

The resulting empirical distributions of ∆u inferred dur-
ing diagnosis are provided in Figure 10, comparing the
estimates with each sensor array to the deterministic cal-
ibrated value from Section 3.1. The distributions of ∆u
showed a relatively high degree of certainty and good
agreement with the previously used calibrated value of
0.032in. To quickly verify that the predictions of C have
not been significantly affected by the additional unknown
parameter, the % error in the sample mean for each crack
parameter is compared for both the unknown ∆u case
here and the known ∆u case from Section 3.4. The er-
rors in the mean estimates, shown in Table 2 are compa-

rable in both cases and are actually slightly lower over-
all for the unknown boundary condition case. These re-
sults demonstrate the ability of the framework to simulta-
neously estimate ∆u during diagnosis and also indicate
that the previously deterministic calibrated value may be
slightly over-estimated from its true value.

4. CONCLUSION

In this study, a computationally-efficient, probabilistic
damage diagnosis framework was presented and exper-
imentally validated. Bayesian inference and MCMC
sampling were used to perform both damage localiza-
tion and characterization with associated quantification
of uncertainties induced from measurement errors. Sur-
rogate modeling was used to provide substantial com-
putational speedup during the diagnosis process. While
the proposed formulation is general for arbitrary com-
ponent geometry, damage type, and sensor data, it was
demonstrated on the problem of panel crack characteri-
zation using strain data determined from DIC. Different
subsets of DIC data were used individually for analysis
to test the effectiveness of strain-based diagnosis as the
distance between the damage and measurement locations
increased.

The ability of the framework to perform both probabilis-
tic damage localization and characterization while effec-
tively capturing the uncertainty in the predictions as the
measurement locations were varied was demonstrated.
Additional strengths of adopting a Bayesian approach
were also illustrated, including the impact of specifying
informative prior distributions on the damage predictions
as well as the ability to infer an unknown noise level
and prescribed displacement during diagnosis. Further-
more, the use of a surrogate model to replace a 3D FE
model was shown to yield average analysis times of 13.5
and 64.4 seconds for damage localization and full dam-
age characterization, respectively. While the accuracy
and certainty of the diagnosis results naturally degraded
as measurement locations were moved further from the
damage, this study reinforced the potential for strain sen-
sors to allow for effective local SHM of hot spots in com-
ponents. Additionally, the framework, capable of provid-
ing full damage characterization with UQ and computa-
tional efficiency, encompasses the necessary characteris-
tics to enable subsequent damage prognosis.
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Figure 9. Marginal prior probability, likelihood, and posterior probability distributions of the crack parameters for the
angled crack specimen.
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Error in Mean Estimate (%)
Sensor Array 1 Sensor Array 2
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