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Originality-Significance Statement: This study represents the first metagenomic interrogation of 20 
Antarctic permafrost and polar cryptoendolithic microbial communities. The results underlie two 21 
different habitability conditions in the same location under extreme cold and dryness: the 22 
permafrost habitat where viable microbial life and activity is questionable, and the 23 
cryptoendolithic habitat which contains organisms capable of growth under the extreme 24 
conditions of the Antarctic Dry Valleys.  25 
 26 
Summary:  27 

Permafrost in the high elevation McMurdo Dry Valleys of Antarctica ranks amongst the driest 28 

and coldest on Earth. Permafrost soils appear to be largely inhospitable to active microbial life, 29 

but sandstone lithic microhabitats contain a trophically simple but functional cryptoendolithic 30 

community. We used metagenomic sequencing and activity assays to examine the functional 31 

capacity of permafrost soils and cryptoendolithic communities in University Valley, one of the 32 

most extreme regions in the Dry Valleys. We found metagenomic evidence that cryptoendolithic 33 

microorganisms are adapted to the harsh environment and capable of metabolic activity at in situ 34 

temperatures, possessing a suite of stress response and nutrient cycling genes to fix carbon under 35 

the fluctuating conditions that the sandstone rock would experience during the summer months. 36 

We additionally identified genes involved in microbial competition and cooperation within the 37 

cryptoendolithic habitat.  In contrast, permafrost soils have a lower richness of stress response 38 

genes, and instead the metagenome is enriched in genes involved with dormancy and 39 
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sporulation. The permafrost soils also have a large presence of phage genes and genes involved 40 

in the recycling of cellular material. Our results underlie two different habitability conditions 41 

under extreme cold and dryness: the permafrost soils which is enriched in traits which emphasize 42 

survival and dormancy, rather than growth and activity; and the cryptoendolithic environment 43 

that selects for organisms capable of growth under extremely oligotrophic, arid, and cold 44 

conditions. This study represents the first metagenomic interrogation of Antarctic permafrost and 45 

polar cryptoendolithic microbial communities. 46 

 47 

 Introduction  48 

A large fraction of Earth’s biosphere is permanently cold, and cold adapted microorganisms 49 

capable of growth at temperatures well below freezing have been found in Polar and non-Polar 50 

Regions (De Maayer et al 2014). It is now well established that permafrost—ground that remains 51 

at or below 0°C for at least two consecutive years—can host viable and active communities of 52 

microorganisms (Bakermans et al 2014, Goordial et al 2013, Hultman et al 2015, Mackelprang et 53 

al 2011, Rivkina et al 2000, Steven et al 2008, Tuorto et al 2014), in addition to cells capable of 54 

resuming metabolic activity upon thawing, even after years of cryobiosis (Legendre et al 2014).  55 

 56 

Current knowledge of the microbial diversity, metabolic activity, and ecology in permafrost is 57 

primarily informed by investigations of Arctic and Alpine regions, despite the fact that 37% of 58 

the world’s permafrost exists in the Antarctic, and some of the coldest permafrost soils are found 59 

in the McMurdo Dry Valleys (Campbell and Claridge 1987, Marchant and Head 2007). Here, the 60 

extremely cold and dry environment results in a layer of dry permafrost soils overlaying ice-61 

cemented soils (Campbell and Claridge, 1987) a condition that is rare on Earth. Microbiology 62 

investigations of dry surface soils throughout the Dry Valleys indicate the presence of localized, 63 

diverse edaphic bacterial communities (Aislabie et al 2006, Cary et al 2010, Chan et al 2013, Lee 64 
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et al 2012, Niederberger et al 2012, Pointing et al 2009, Smith et al 2006, Stomeo et al 2012). 65 

However, the abundance and diversity of these communities is strongly influenced by climate, 66 

and biomass in the inland, high elevation Dry Valleys, which are drier and colder, is significantly 67 

lower (103-104 cells g-1) (Gilichinsky et al 2007, Goordial et al 2016) relative to maritime 68 

influenced Dry Valleys which are relatively wetter and warmer, and can harbour as much as 108 69 

cells g-1 (Cowan et al 2002). Limited work has been carried out in ice-bearing permafrost soils 70 

(Bakermans et al 2014, Gilichinsky et al 2007, Goordial and Whyte 2014, Goordial et al 2016, 71 

Tamppari et al 2012) compared with dry surface soils, largely due to the logistical challenges 72 

associated with sampling ice-cemented ground in these very remote regions.  73 

 74 

Some of the coldest and driest permafrost soils studied to date in the Dry Valleys are found in 75 

University Valley, a high elevation (1650-1800 m.a.sl) glacial valley in the Quartermain Range 76 

(Goordial et al 2016, Tamppari et al 2012). Air temperature data collected between 2009-2013 in 77 

University Valley was measured to be always below 0ºC, with a maximum, minimum and mean 78 

hourly air temperature of -2.8ºC, −45.5 ºC, and −23.4 ºC respectively (Goordial et al 2016). 79 

During the summer months (Dec - Feb) mean air temperature was -13.9ºC, with daily 80 

temperature fluctuations between -15ºC and -5ºC, depending on cloud cover and shadowing 81 

(Lacelle et al 2015). Permafrost soils in University Valley contain negligible microbial biomass 82 

(103 cells g-1) and culturable organisms (0−101 CFU g-1), and microbial activity in some of these 83 

soils can be undetectable in situ and in long-term microcosm assays (Goordial et al 2016). These 84 

soils are potentially devoid of any active microbial life, or alternatively, any existing 85 

metabolically active cells are below the detection limits of current methodologies. 86 

 87 
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Immediately adjacent to these depauperate soils there is a trophically simple but functional 88 

cryptoendolithic microbial community that occupies the pore space of sandstone rocks and cliffs, 89 

and which is comprised of photoautotrophs, lichenizing and free-living fungi and heterotrophic 90 

bacteria (Friedmann 1982), with demonstrated heterotrophic respiration at temperatures as low as 91 

−20ºC (Goordial et al 2016). Similar colonized lithic substrates are widespread in the Dry 92 

Valleys (Cary et al 2010, Cowan et al 2010, De Los Rios et al 2014, Friedmann 1982, Friedmann 93 

et al 1988), and typically harbour a relatively high microbial diversity compared to surface soils 94 

(Pointing et al 2009), supporting the idea that microbial activity in extremely dry, cold or hot 95 

deserts is largely confined to specialized lithic habitats (Pointing and Belnap 2012, Wierzchos et 96 

al 2013). The sharp biological contrast between permafrost soils and sandstone rocks suggests 97 

that the physical nature of the microenvironment plays a decisive role in the habitability of this 98 

extremely cold region, and the potential absence of in situ biological activity in the permafrost 99 

soils points to a fundamental cold threshold for life, a very rare case on Earth that can be used to 100 

constrain the natural cold limit of biological processes.   101 

    102 

The objective of this study was to assess the functional differences that underlie the success of 103 

the cryptoendolithic communities in comparison to permafrost soils in University Valley, and to 104 

assess both for the functional capacity of microorganisms to survive in the extremely hyper-arid, 105 

cold and oligotrophic environment. Since carbon fixation is thought to be crucial to 106 

cryptoendolithic function, we also assessed the activity and diversity of the photoautotrophic 107 

community members in such a hostile environment. The data presented here is the first 108 

metagenomic sequencing of Antarctic Dry Valley permafrost completed to date, as well as the 109 

only polar cryptoendolith metagenome sequenced to date. We used the permafrost soil 110 

Page 4 of 43

Wiley-Blackwell and Society for Applied Microbiology



For Peer Review Only

5 
 

metagenome to compare to other cold or arid soils globally to gain insight into why permafrost in 111 

the high elevation Dry Valleys could be inhospitable to life compared to permafrost elsewhere 112 

which experience similarly low temperatures, and in which microbial activity has been 113 

unambiguously detected (Goordial et al 2013).  114 

 115 

Results and Discussion 116 

Metagenome and soil summary 117 

Table 1 shows an overview of the metagenome statistics. The permafrost soils used for 118 

metagenomics analysis had a gravimetric moisture content of 9.83%, and was very oligotrophic 119 

with 0.02% total carbon, and total nitrogen concentrations below detection limits (<0.001 %). 120 

Large amounts of soil were used for DNA extraction (60 g), however due to the low biomass (3 121 

x 103 cells g-1), multiple displacement amplification (MDA) was required to generate enough 122 

reads. While there are inherent amplification biases known to be associated with MDA 123 

(Abulencia et al 2006, Yilmaz et al 2010), the use of MDA was seen as an acceptable 124 

compromise to access the functional potential of the very low cell density permafrost soil which 125 

was not previously accessible. MDA was not necessary for cryptoendolith samples. Only 63,452 126 

(8.6%) sequences from the permafrost soils and 193,269 (17.4%) sequences from the 127 

cryptoendolith metagenomes could be assigned an annotation using the M5 non-redundant 128 

protein database (M5nr). With 256,721 annotated reads in this study, we did not identify or 129 

capture the entire genetic diversity in these samples.  130 

 131 

Microbial community composition  132 
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Based on all annotated genes in the metagenomes, the permafrost soil community was Bacteria 133 

dominated (86%), with a smaller Eukaryotic fraction (12%), primarily belonging to the fungal 134 

phylum Ascomycota (Table 2). The cryptoendolith community was mostly Eukaryotic (54%), 135 

comprised of the fungal phyla Ascomycota (45%) and Basidiomycota (2%), as well as the algal 136 

phyla Chlorophyta and Streptophyta (5%), reflecting the lichen dominated community that is 137 

prevalent in the Dry Valleys (de la Torre et al 2003, Sun et al 2010). Algae were nearly absent in 138 

the permafrost soils (~0.1%), and similarly, photoautotrophic bacteria belonging to Chloroflexi, 139 

Cyanobacteria, and Chlorobi were detected in small amounts in the cryptoendolith but not in the 140 

permafrost soil metagenome.  141 

 142 

Similar to other Dry Valleys, Ascomycota and Basidiomycota were the dominant edaphic and 143 

lithobiontic fungal phyla, but the phylum Chytridiomycota, abundant in Dry Valley active layer 144 

soils (Dreesens et al 2014), was absent in the University Valley permafrost soils and was 145 

negligible in the cryptoendolith community (<0.001%). The fungi to bacteria ratio was low in the 146 

permafrost soil, as has been observed in the Dry Valleys before, likely due to the low water 147 

activity, low C:N ratios, and more extreme conditions that restrict fungal growth and dispersal in 148 

high elevation inland soils, while still permitting bacterial survival (Dreesens et al 2014). Though 149 

more abundant among the cryptoendolith, similar Ascomycota fungi were found in both habitats, 150 

and consisted mainly of Eurotiomycetes, Sordariomycetes, and Dothideomycetes. Isolates from 151 

these classes are known to be polyextremophillic and are found as parasymbionts (symbionts to 152 

lichen) in Antarctic lithic habitats (Selbmann et al 2005). Eurotiomycetes and Dothideomycetes 153 

include the ‘black yeast’ fungi, which are melanized and are known for their desiccation and UV 154 

resistance (Ruibal et al 2009, Selbmann et al 2005), and may play an important role in 155 
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community protection from excessive UV radiation, for example by providing an opaque barrier 156 

above photobionts in the lithobiontic community (Selbmann et al 2013).  157 

 158 

Actinobacteria were the predominant bacterial phylum identified in both the permafrost soil and 159 

cryptoendolith metagenomes (64 % and 20% respectively). Firmicutes, Bacteriodetes and Alpha 160 

proteobacteria were also abundant, similar to other regions in the Dry Valleys (Cary et al 2010, 161 

Goordial and Whyte 2014) (Table 2). Desiccation and radiation resistant Rubrobacteridae 162 

(cryptoendolith: 0.5%, permafrost:  0.01%) and Deinococcus-Thermus group bacteria 163 

(cryptoendolith: 0.5%, permafrost: 0.02%) commonly found in hot and cold desert soils were 164 

however low in the permafrost soil metagenome. These extremophiles are known to be resistant 165 

to desiccation, ionizing radiation, UV radiation, and reactive oxygen species (Ferreira et al 1999, 166 

Makarova et al 2001, Webb and DiRuggiero 2013). Resistance to the fluctuating moisture 167 

conditions, as well to UV radiation would be advantageous in the cryptoendolithic and surface 168 

soil habitats, compared with the relatively stable, and dark subsurface permafrost environment. 169 

Deinococcus-Thermus group bacteria have been previously found to be dominant members of 170 

Dry Valley cryptoendolithic communities (de la Torre et al 2003). Negligible Archaeal 171 

sequences were identified in both metagenomes (0.4% in the cryptoendolith and 0.01% in 172 

permafrost soil) consistent with previous reports that Archaea are absent, or difficult to detect in 173 

Dry Valley soils and lithobiontic communities (Lee et al 2012, Pointing et al 2009). The most 174 

abundant archaeal classes were Methanomicrobia and Halobacteria, which were found to 175 

represent 0.1% and 0.09% of reads respectively in the cryptoendolithic community.  176 

 177 
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Viral reads were a minor component of the cryptoendolith metagenome (0.5%), but comprised a 178 

relatively large proportion of the permafrost soil metagenome (2%). Viral families identified 179 

were consistent with those detected in other Dry Valley soils and lithic environments (Wei et al , 180 

Zablocki et al 2014), and Microviridae and Siphoviridae were the most abundant in both 181 

metagenomes (Table S 1). Microviridae and Siphoviridae are known to infect bacteria, and have 182 

been found associated with Arthrobacter, Streptomyces, Staphylococcus and Bacillus species in 183 

Antarctic soil (Hopkins et al 2014, Swanson et al 2012), genera also identified in University 184 

Valley soils (Goordial et al 2016). The comparative paucity of viral reads in the cryptoendolithic 185 

community is in contrast to previous comparisons of lithic habitats and open soils in the Dry 186 

Valleys, which found that lithic habitats harbour a higher abundance and diversity of viruses 187 

(Zablocki et al 2014). The reasons underlying these differences are unknown, as little is yet 188 

known about viral roles in community ecology in the Dry Valleys. In Arctic active layer soils, 189 

viruses have been demonstrated to exert a top down control on soil communities, decreasing both 190 

biomass and activity (Allen et al 2010). The proportion of viral reads found in this study are 191 

higher than those observed in the metagenomes of permafrost soils in the Arctic and Dry Valley 192 

surface soils (Table S3) which range from 0.008% to 0.09% of total reads. 193 

 194 

Community fingerprinting data for individual cryptoendolith and ice-cemented permafrost soil 195 

samples (Figure S1) showed that samples that community composition at the phylum level had 196 

little variability in University Valley soils, or the cryptoendoliths samples here. Cryptoendoliths 197 

were dominated by reads assigned as cyanobacteria or chloroplasts- metagenomic sequencing, in 198 

conjunction with the plastid sequencing efforts described below indicate that most of these 199 

sequencings are from algae, with small cyanobacterial populations. Permafrost samples were 200 
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dominated by gamma-proteobacteria primarily belonging to the orders Alteromonadales, 201 

Oceanospirallales, and Pseudomonadales.  202 

 203 

Dry Valley surface soil communities have been found to be highly localized, suggesting a high 204 

degree of endemism within each valley (Lee, 2012), and indicating that aeolian input of 205 

microorganisms by strong katabatic winds throughout the Dry Valleys may play a more limited 206 

role in community composition compared to local conditions. For example, a recent 16S rRNA 207 

gene survey of aerosols in the lower elevation Dry Valleys showed few OTUs in common with 208 

the nearby surface soils (Bottos et al 2014). In University Valley, soils are largely derived from 209 

the weathering and erosion of the colonized valley walls (Heldmann et al 2013, Tamppari et al 210 

2012), and a previous molecular survey found that the cryptoendoliths and surface soils share 211 

few OTU’s in common (Goordial et al 2016). It is likely that the permafrost soil community in 212 

University Valley is derived from a mixture of wind deposited cells and weathered 213 

cryptoendoliths, in which subsequently only the few cells that can form spores, remain dormant, 214 

or have advantageous adaptations to the extremely oligotrophic, arid and cold permafrost 215 

environment, may survive.  216 

 217 

Functional diversity in University Valley cryptoendolith and permafrost communities  218 

 219 

The most abundant genes in both metagenomes were related to housekeeping functions such as 220 

carbohydrate metabolism, amino acids and derivatives, protein metabolism, respiration, and co-221 

factor, vitamin and pigment production (Figure 3). Genes responsible for the degradation of 222 

cellular material were more abundant in the permafrost soil and included several involved with 223 
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murein recycling, and N-acetylglucosamine and chitin utilization. These genes could be 224 

advantageous for using cellular material as a nutrient source, including potential biomass from 225 

eroding cryptoendolithic communities. The cryptoendolith metagenome was enriched with genes 226 

involved with photosystems, CO2 fixation, and auxin biosynthesis, phytohormones which can 227 

stimulate growth and production of antioxidants in algae (Piotrowska-Niczyporuk and Bajguz 228 

2014). Genes reflective of the dense microbial consortia living within the narrow colonized zone 229 

were found in the cryptoendolith metagenome including genes associated with quorum sensing 230 

(N-acyl homoserine lactone hydrolase, S-adenosylmethionine synthetase), multidrug efflux 231 

pumps, antibiotic resistance (penicillin, fluoroquinolones, methicillin, vancomycin) and genes 232 

for the production of secondary metabolites known to be antibacterials and antifungals 233 

(phenanzine, clavulanic acid). Biosynthesis genes for a number of cofactors, vitamins and 234 

prosthetic groups which can support photosynthesis were present in both metagenomes 235 

(coenzyme B12, thiamine, biotin). Both metagenomes had the functional potential for catabolism 236 

of a diversity of aromatic compounds, poly- and oligosaccharides and carbohydrates (e.g. 237 

catabolism of benzoate, catechol, gentisate, maltose, mannose, xyloglucan, lactose).  238 

 239 

Stress Response and cold adaptation  240 

 241 

The cryptoendolith metagenome had both a higher relative abundance (Figure 3) and higher 242 

diversity of stress response genes (measured as number of different stress response genes) 243 

compared to the permafrost soils, with 87 and 34 stress response genes respectively (Figure S2). 244 

The two metagenomes only shared 25 of the 96 stress response related genes detected. Known 245 

cold-adaptive genes were found in both the soils and cryptoendolith metagenome. General 246 
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microbial adaptations to cold environments include mechanisms that protect the cell from 247 

freezing, preserve enzymatic membrane function, protect against reactive oxygen species (ROS), 248 

and protect against osmotic stress caused by the increasing salt and solute concentrations as 249 

water freezes (Goordial et al 2013). The stress response pathways in both habitats represented 250 

redundant functions, mostly associated with the osmotic and oxidative stresses, which are 251 

characteristic of cryoenvironments. For example, shared proteins in both habitats included those 252 

involved with glycerol uptake, and proline and glycine betaine transport across membranes, these 253 

are cryoprotectants and compatible solutes which are commonly used by psychrophilic 254 

microorganisms as a strategy to cope with osmotic stress in sub-zero environments (Methé et al 255 

2005, Mykytczuk et al 2013). Cold-shock proteins were found in both metagenomes, although 256 

bacterial antifreeze protein, which prevents ice-crystal formation, was only found in the 257 

cryptoendolith. Other shared stress response genes were related to general stress response 258 

functions like chaperones, sigma B stress response, carbon starvation or phage shock protein A 259 

(pspA); phage shock protein A is a stress response gene involved in maintaining cell membrane 260 

and proton motive force integrity and is induced during extremes of temperature, osmotic stress, 261 

and filamentous phage infection.  262 

 263 

Nutrient Cycling 264 

 265 

In highly oligotrophic soils like those encountered in University Valley, carbon and nutrient 266 

sequestration is important. Examining the presence and absence of metabolic pathways we found 267 

no evidence for functioning autotrophic pathways in the permafrost soil as determined by the 268 

absence of key enzymes in the Calvin Benson cycle, the reductive TCA cycle, the reductive 269 
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acetyl-coA pathway, and the hydroxypropionate cycle carbon fixation pathways (Table 3). The 270 

paucity of genes associated with autotrophy suggests these soils are dependent on heterotrophic 271 

substrates. As expected, the cryptoendolith metagenome contained the genes for CO2 fixation 272 

with the Calvin Benson cycle. Genes associated with metabolism of trace gases and other C1 273 

compounds (methanogenesis, acetogenesis, methanotrophy) were limited or absent in both 274 

metagenomes, with the exception of methane monooxygenase (mmoX) detected in the 275 

cryptoendolith metagenome. Genes required for heterotrophy were abundant in both 276 

metagenomes including genes required for acetate metabolism, a compound not mineralized at 277 

sub-zero temperatures in University Valley soils (Figure 2 and (Goordial et al 2016)). Key genes 278 

in the glyoxylate pathway were found in both metagenomes, including isocitrate lyase and 279 

malate synthase, and it is possible the CO2 releasing steps of the TCA cycle can be bypassed, 280 

although heterotrophic activity as inferred from respired 14CO2 was detected in University Valley 281 

permafrost soil microcosms at 5ºC (Figure 2) so it is unlikely that the glyoxylate pathway is 282 

responsible for the lack of microbial activity observed at sub-zero temperatures. Previous 283 

analysis of University Valley permafrost soils indicated that due to the low salt concentration, 284 

the amount of liquid water at below freezing temperatures is limited only to thin films adhering 285 

to sand grains (Goordial et al 2016). The activity observed only above freezing temperatures may 286 

reflect water newly available for cells, which would be otherwise dormant at in situ freezing 287 

temperatures.  288 

 289 

Nitrogenase reductase (nifH) sequences were not detected in either metagenome. 290 

Cryptoendolithic communities in the Upper Dry Valleys largely lack the ability to fix nitrogen 291 

(as measured by acetylene reduction), likely because of available nitrates which are 292 
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atmospherically deposited and which have low leaching rates in desert environments (Friedmann 293 

and Kibler 1980). Some nitrogen cycling genes (nitrate and nitrite reductases) were recovered 294 

from both metagenomes, although other denitrification genes (nitric oxide reductase and nitrous 295 

oxide reductase) were absent. The lack of nitrogen and carbon fixation capacity in the permafrost 296 

soils separates these soils from Arctic permafrost and lower elevation (<1000 m.a.s.l.) Dry 297 

Valleys surface soils where both photoautotrophic and diazotrophic pathways have been 298 

identified in functional microarray and PCR surveys (Chan et al 2013, Niederberger et al 2012, 299 

Yergeau et al 2010).  300 

 301 

Microbial activity in University Valley and characterization of the photoautotrophic 302 

cryptoendolith community  303 

 304 

Photoautotrophic microorganisms drive carbon acquisition in the sandstone cryptoendoliths, and 305 

may be a source of organic matter to the permafrost soils, and thus could play a key role in 306 

ecosystem function. In order to get better resolution of the photoautotrophic diversity we carried 307 

out 454 pyrosequencing on two cryptoendolith samples targeting the 23S rRNA plastid gene 308 

found in photosynthetic organisms, including cyanobacteria and algae (Sherwood and Presting 309 

2007). The cryptoendolith photoautotroph community was dominated almost entirely by 310 

Trebouxia, an algae known to form lichenizing associations, which made up over 99% of 311 

sequences. Lichen dominated cryptoendoliths in the high elevation Dry Valleys have been 312 

previously shown to be mono-specific (de la Torre et al 2003), but we found a high diversity of 313 

Trebouxia sp. in the cryptoendolith samples, with 365 OTU's (97% cut-off) for this genus 314 

between both cryptoendolith samples, which only shared 24 OTU’s in common (Figure S3). 315 
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Cyanobacteria were a minor component made up of 4 OTUS’s (representing 33 sequences) in 316 

one cryptoendolith sample, and were absent in the other (Figure S3). Other photosynthetic 317 

organisms were not detected using pyrosequencing, including Chloroflexi, and the Streptophyta 318 

algae annotated in the metagenome. 319 

 320 

We were able to isolate green algae from the cryptoendolith samples (Table S 2) belonging to the 321 

genus Stichococcus and Desmococcus.  Photoautotrophs could not be cultured from permafrost 322 

soils using the same methodologies. Isolates identified as Stichococcus EN2JG and Desmococcus 323 

EN5JG were adapted for cold temperatures and demonstrated growth (Table S2) and chloroplast 324 

autofluorescence at −5ºC (Figure 2). Notably, the observed growth occurred with no media 325 

amendments to prevent cultures from freezing, indicating these isolates are synthesizing freezing 326 

point depressants to maintain a liquid culture at sub-freezing temperatures. The isolates were not 327 

capable of growth when glycerol (5%) or NaCl (5%) were added as freezing point depressants, 328 

and the liquid media tested here froze at the other temperatures tested (< −10ºC), thus potential 329 

growth at lower temperatures could not be measured. Two Stichococcus isolates differed in their 330 

growth characteristics; Stichococcus sp. EN2JG was a eurypsychrophile with an optimal 331 

temperature of 22ºC and a minimum temperature of −5ºC, while Stichococcus sp. UV2BC was a 332 

stenopsychrophile incapable of growth at 22ºC, with an optimal temperature of 10ºC and a 333 

minimum temperature of 0 ºC. Differing growth optima may occur in the diverse unculturable 334 

algae surveyed here as well, and would result in communities which could fix carbon over the 335 

breadth of fluctuating conditions the sandstone cryptoendoliths would experience.  336 

 337 
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We also carried out Pulse Amplitude Modulated (PAM) fluorometry to determine the activity of 338 

the photosystem II [PS(II)] of phototrophic members of the cryptoendoliths. Significant PS(II) 339 

activity (measured as variable fluorescence, (Fo - Fm)/Fm) was measured to be 0.618,  0.560, 340 

0.467 at 20ºC, 0ºC and −20ºC respectively, indicating that colder temperatures affected PS(II) 341 

efficiency, but photosynthesis could still potentially occur at −20ºC. We found that similar 342 

amounts of amounts 14C labelled acetate was mineralized at 5ºC (4.1%), −5ºC (3.8%), and −10ºC 343 

(4.4%) over 100 days (Figure 2); thus both the heterotrophic and photoautotrophic communities 344 

within the cryptoendoliths display thermal plasticity allowing activity over a range of 345 

temperatures that overlaps with those observed in the natural environment during the summer 346 

months. In contrast, heterotrophic activity in permafrost soils was undetectable at −5ºC and -347 

10ºC, and could only be detected at 5ºC, a temperature which is not encountered in situ and 348 

likely reflects the activation of dormant but viable cells.  349 

 350 

Comparison of University Valley permafrost with other desert and permafrost 351 

metagenomes 352 

 353 

An ordination (Figure 4) was created to examine the functional similarities and differences of 354 

University Valley permafrost soil with other permafrost and desert environments. A list of the 355 

metagenomes used for comparison in this study is available in Table S3. The University Valley 356 

permafrost soil metagenome clustered most closely with other permafrost metagenomes from the 357 

Arctic, and separately from the more geographically proximate Dry Valley active layer soils. 358 

This may indicate that the permafrost soils in University Valley are more similar to Arctic 359 

permafrost than previously assumed based on the low biomass and lack of microbial activity 360 
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previously detected (6). Compared to the hot and cold desert soils, the permafrost metagenomes 361 

were enriched in genes associated with osmotic stress, which would be advantageous in the brine 362 

veins thought to exist within permafrost as a potential microbial habitat, where salts, solutes and 363 

microorganisms could be concentrated together during freezing in a similar manner to sea ice 364 

(Junge et al 2001). The permafrost soils metagenomes were also enriched in integrases and 365 

transposases, and antibiotic and antiseptic resistance genes including beta-lactamases, 366 

vancomycin and acriflavin resistance. It is not known what role these genes would have, though 367 

it is possible that in permafrost soils microbial biomass becomes concentrated within brine veins, 368 

increasing microbial competition for limited nutrients and possibly occurrences of lateral gene 369 

transfer. University Valley permafrost soil was an outlier to the permafrost samples in this 370 

respect and had the lowest proportion of antibiotic resistance genes, integrases and transposases 371 

(Figure S4). The contrast could be due to a combination of unique factors in University Valley 372 

soils; the low soil salinity is prohibitive to the formation of brine veins where cells could 373 

concentrate (Goordial et al 2016), biomass in University Valley permafrost soils is extremely 374 

low (103 cells g-1), and as indicated by the absence of metabolic activity, microorganisms in the 375 

permafrost soils are likely not competing, but are dormant. University Valley permafrost soils 376 

were less functionally equipped with oxidative stress, general stress response and cold shock 377 

genes, though intriguingly had the highest proportion of phage related genes (mostly phage 378 

capsid proteins) compared to the other permafrost metagenomes. Rather than a diversity of stress 379 

response functions, University Valley had a comparatively high proportion of a number of genes 380 

associated with sporulation and spore DNA protection (Figure S4). While survival on long time 381 

scales is important in all permafrost environments (Figure 4), traits which allow cells to persist in 382 

permafrost, rather than for growth or activity, are especially emphasized in University Valley 383 
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permafrost soils where the conditions may be too extreme for the activity of even cold adapted 384 

extremophiles.  385 

 386 

Comparison of University Valley cryptoendolith metagenome with other photoautotroph 387 

based metagenomes 388 

 389 

To our knowledge, this is the first terrestrial cryptoendolithic metagenome reported to date, and 390 

no metagenomes for related habitats such as hypoliths and chasmoendoliths are currently 391 

available in public databases.. Thus we are limited in our ability to compare the University 392 

Valley cryptoendolith to lithic environments in other hot or cold deserts. We chose to compare 393 

the biofilm like cryptoendolith community with other communities which have a large 394 

photoautotroph component, and included in our ordination metagenomes from an Alpine lichen 395 

community, polar microbial mats, and a glacial cryoconite hole microbial community. The 396 

cryptoendolith metagenome did not cluster strongly with any of these metagenomes. The 397 

cryptoendolith shared with the lichen metagenome a higher proportion of genes involved with 398 

quorum sensing, and cofactor, vitamin and pigment production, a reflection of the symbiotic 399 

relationship between mycobionts and phycobionts seen in both the cryptoendolith and lichen 400 

communities.  The genes shared with the Antarctic microbial mat metagenome were important in 401 

biofilms, including those involved in adhesion, extracellular polysaccharides, and siderophore 402 

production; in the cryptoendolith these traits would be useful in rock colonization, and iron 403 

acquisition/mobilization functions which result in the characteristic red banding pattern seen in 404 

cryptoendolithic communities (Figure 1).  Phages, bacterial cytostatic and antibiotic production 405 

and resistance was most abundant in the cryptoendolith metagenome, possibly indicative of a 406 
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higher level of microbial competition and predation than in the other metagenomes used here for 407 

comparison.  408 

 409 

Conclusion: Habitability conditions in University Valley permafrost soils and lithic 410 

habitats. 411 

 412 

It has already been postulated that while microorganisms are present in the permafrost soils 413 

(Goordial et al 2016, Tamppari et al 2012), microbial activity is likely non-existent in parts of 414 

University Valley where soils are permanently cryotic (Goordial et al 2016). We refer to these 415 

soils as non-habitable, but not sterile, and the resulting permafrost soil community is likely a 416 

mixture of aeolian and cryptoendolithic origin. This interpretation is supported by the 417 

metagenomic data presented in this study, which revealed less cold and general stress response 418 

functional diversity, critical for life in permafrost soils, whereas sporulation (i.e. dormancy) is an 419 

emphasized function. The functional potential for recycling of cellular material, as well as the 420 

large presence of phage associated genes suggest that if there is an active component of 421 

University Valley permafrost soils, it could survive using scavenged organic matter, possibly of 422 

endolithic origin since that is the only relevant source of biomass in the valley.   423 

 424 

On the other hand the cryptoendolithic communities that colonize the valley walls appear to be 425 

adapted to the harsh conditions within the valley (Figure 5), as evidenced by the development of 426 

a complete ecological community, including photoautotrophic algae and bacterial/fungal 427 

consumers that are viable and active over the range of temperatures the cryptoendoliths 428 

experience, and by the diversity of stress response functions and nutrient cycling pathways. We 429 
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have added to the functional knowledge of lithic communities which are known ‘hot spots’ of 430 

productivity in cold and dry environments, including evidence for the likely presence of 431 

community competition in addition to the well-known symbiotic interactions, as indicated by the 432 

presence of antifungal and antibacterial production and resistance genes. 433 

 434 

The stark biological contrast between permafrost soils and lithobiontic habitats is due largely to 435 

the physical properties of the lithic substrate. Primarily, the sandstone favours the occurrence of 436 

wet events through inducing the melting of snow (Friedmann 1978, Friedmann et al 1987). Once 437 

wet, surface tensions between thin films of water and the rock matrix slow down evaporation, 438 

and extends the window for metabolic activity (Friedmann et al 1987). This, together with the 439 

protection from UV radiation while still allowing for photosynthetic activity, represent decisive 440 

survival advantages that ultimately control habitability under extreme cold and dry conditions.  441 

 442 

Our results evidence that caution should be taken when interpreting function solely from 443 

genomic analyses, which cannot differentiate between vegetative, dormant and dead cells, 444 

especially in stable and cold permafrost soils which are likely highly preserving for nucleic 445 

acids. Additionally, the lack of detection of genes found in other Dry Valley environments but 446 

not in University Valley permafrost soils (antifreeze proteins, nitrogenase genes etc) may be due 447 

to limitations in depth and coverage, the small sample size in this study, as well as the biases 448 

introduced by MDA; future metagenomic studies in the Dry Valleys will likely overcome these 449 

drawbacks as sequencing technologies improve and lower in cost.  Metagenomic analysis is best 450 

complimented by functional validation and activity assays, though given the difficulties in 451 

culturing and isolating organisms from such extreme environments, metagenomics sequencing is 452 
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a good proxy for the functional potential of environments which may otherwise be inaccessible. 453 

Future studies utilizing transcriptomic, proteomic and activity assays targeting some of the 454 

functions identified in this study are the next step to understanding how microbial communities 455 

are adapted to thrive and survive in one of the coldest and driest terrestrial habitats on Earth. 456 
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Material and Methods 466 

Sample collection and preparation 467 

The University Valley permafrost core sample used in this study was collected in the 468 

2009 summer field season, located at 77d 51.870s S, 160d43.524s E (elevation 1700 m.a.s.l). 469 

Depth from the surface to the ice-cemented ground was 22 cm. An 18 cm ice-cemented 470 

permafrost core was collected with a SIPRE corer along with overlaying dry permafrost Samples 471 

were shipped to McGill University in a thermally insulated box and maintained at −20ºC until 472 

processing. Initial core processing took place in a walk-in freezer held at −5ºC, in a laminar flow 473 

hood where 1 cm of the outside of the core was removed with a sterilized chisel. An additional 1 474 

cm of the outside core was removed in a laminar flow hood at room temperature immediately 475 

prior to samples being weighed and aliquoted for analysis. Cryptoendolith samples used in this 476 

study were collected in the 2013 summer field season, from Beacon supergroup sandstone 477 

boulders located on the South-East facing valley walls. Samples were aseptically collected and 478 

maintained at −20ºC until processing.  479 

Soil Analysis 480 

The soils were analyzed for total carbon and total nitrogen by combustion at 900°C with 481 

a Carlo Erba Flash EA 1112 NC Soils Analyzer which has an analytical error of ±1%.  482 

Gravimetric moisture content was measured as a percentage of dry weight. 20 g of soil was oven 483 

dried at 100°C for 48 hours and weighed using a Mettler AE 163 analytical balance with an 484 

accuracy ±0.02 mg. The pH of soils was measured using a 1:2 slurry of soil:deionized water with 485 

a Fisher Scientific pH electrode (Fisher Scientific), with an efficiency slope of >95%.  486 

DNA extraction  487 
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The top ten 10 cm of the ice-cemented permafrost core (22-32 cm depth from the surface) 488 

was used for metagenomics analysis. Community DNA was extracted from 2 g of permafrost 489 

soil using the UltraClean Soil DNA Isolation kit (MoBio Laboratories Inc., Carlsbad, California, 490 

USA), as described in the alternative protocol for maximum yield, and a bead beating step was 491 

added to aid lysis. 30 extractions (60 g total permafrost soil) were performed and the resulting 492 

DNA was pooled and concentrated. DNA from cryptoendoliths was extracted from 6 grams total 493 

of crushed rock using the same DNA extraction protocol as for permafrost. Negative controls 494 

(H2O in place of sample) underwent identical handling during the extraction procedure and were 495 

used as templates for PCR using 16S rRNA gene primers (27F and 1492R) to ensure no 496 

contamination during extraction. 497 

Metagenomic Sequencing and Analysis 498 

DNA was sent to Molecular Research LP (Shallowater, Texas, USA) for sequencing.  499 

There, the library was prepared using Nextera DNA Sample preparation kit (Illumina) following 500 

the manufacturer's user guide. Both the samples were first purified using PowerClean DNA 501 

Clean-up Kit (MoBio) and concentration of purified gDNA was evaluated using the Qubit 502 

dsDNA HS Assay Kit (Life Technologies). Because of low DNA concentration for the ice-503 

cemented permafrost sample Multiple Displacement Amplification (MDA) was performed at 504 

30°C for 16h using the REPLI-g Midi Kit (Qiagen) according to the manufacturer's instructions 505 

for 2.5uL of input DNA. Once amplification was complete, the concentration of the sample was 506 

again determined and each sample was diluted accordingly to achieve the recommended DNA 507 

input of 50ng at a concentration of 2.5ng/µL. Subsequently, the sample underwent the 508 

simultaneous fragmentation and addition of adapter sequences. These adapters are utilized during 509 

a limited-cycle (5 cycles) PCR in which unique index was added to the sample. Following the 510 
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library preparation, the final concentration of the library was measured using the Qubit dsDNA 511 

HS Assay Kit (Life Technologies), and the library size was determined using the Experion 512 

Automated Electrophoresis Station (Bio-Rad). The libraries (12.5 pM) were pooled together and 513 

was sequenced by using 600 Cycles v3 Reagent Kit (Illumina) in MiSeq (Illumina). Sequences 514 

were processed using MG-RAST (Meyer et al 2008), artificial replicate sequences produced by 515 

sequencing artifacts were removed (Gomez-Alvarez et al 2009), and sequences were quality 516 

trimmed using the default settings for dynamic trimming (sequences contain <5 bp below a phred 517 

score of 15). Any human or chordata contaminants were removed from the dataset. To determine 518 

the presence or absence of functional genes, we used GenBank annotated proteins in MG-RAST 519 

(e-value ≤10-5, alignment length >15). We used the statistical probability model in Statistical 520 

Analysis of Metagenomic Profiles (STAMP) (Parks and Beiko 2010) (version 2.08; Faculty of 521 

Computer Science, Dalhousie University) to identify the biologically relevant differences 522 

between the permafrost and cryptoendolith metagenomes. A pairwise statistical comparison of 523 

the two metagenomes analyses was carried out using clustering based SEED subsystem 524 

annotations (E≤10-5, similarity > 60 %, alignment length >15),  using a two-sided Chi-square test 525 

(with Yates) statistic with the DP: asymptotic-CC confidence interval method and the Bonferroni 526 

multiple test correction. A P-value of <0.05 was considered significant, and an effect size filter 527 

for ratio of proportions (RP) effect size <2.00 and a difference of proportions of <2.5. 528 

Comparisons of the University Valley metagenomes were made to other publically available 529 

metagenomes from similar hot and cold deserts, or microbial mat communities (Table S 3), all 530 

metagenomics data was processed through MG-RAST to make analyses comparable. Relative 531 

abundance was used to calculate Bray-Curtis distances between sample pairs using the “vegdist” 532 

function of the “vegan” package (http://vegan.r-forge.r-project.org/) in Rstudio (version 533 
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0.98.1091). Principle coordinate analyses (PCoA) analyses were performed using the ‘cmdscale’ 534 

function. Relative abundance of level 1 of the SEED hierarchy were superimposed on the 535 

ordination using the “envfit” function.  536 

Pyrosequencing of plastid gene amplification  537 

DNA from the cryptoendoliths was sent for pyrosequencing analyses at the Research and 538 

Testing Laboratory (Lubbock, TX, USA) using the Roche 454 GS-FLX platform (Roche 454, 539 

Branford, CT, USA). Sample libraries of partial bacterial/ algal 23S rRNA amplicons were 540 

produced using the forward primer (5’GGACAGAAAGACCCTATGAA-3’) and reverse primer 541 

(5’-TCAGCCTGTTATCCCTAGAG- 3’) that flank the V domain of the 23S plastid rRNA gene. 542 

Data was processed using Mothur (Schloss et al., 2009), Briefly, sequences were quality filtered 543 

by removing primer sequences, reads < 150 bp long, sequences with ambiguous base calls, and 544 

homopolymer repeats greater than 8bp.  Chimera removal using chimera.uchime within Mothur 545 

was used to further reduce sequencing error prior to alignment and clustering. A total of 13,557 546 

sequences were analyzed after quality control. Sequences were aligned to the Silva LSU bacterial 547 

database (Accessed March 2015) and OTUs were clustered using average-neighbour clustering 548 

with a 97% cut-off.  The ‘get.oturep’ command of Mothur was used to retrieve a representative 549 

sequence for each OTU. Representative sequences were classified using the MEGAN5 software 550 

(v. 5.3.0) (Huson et al 2007) after BLASTn searches against the GenBank nt database 551 

(http://www.ncbi.nlm.nih.gov/GenBank/) (accessed June 2014) with default settings, and by 552 

excluding noncultured/environmental sequences from the target database. For MEGAN5 553 

classification, LCA parameters were changed from default as to favour the taxonomic 554 

information of the best BLASTn hits to be assigned to a given read; LCA parameters were set to 555 

‘Min Support: 2’, ‘Min Score: 100’, ‘Top percent: 2’, and ‘Min complexity:0’. The primers used 556 

Page 24 of 43

Wiley-Blackwell and Society for Applied Microbiology



For Peer Review Only

25 
 

in this study were found to amplify some non-phototrophic bacteria (belonging to acidiphilum, 557 

and caulobacter) representing <0.01% of reads and which were manually removed from the 558 

dataset. 559 

Community fingerprinting of cryptoendoliths and soil samples  560 

Environmental DNA was extracted from the colonization zone of 4 individual sandstone rocks or 561 

from 0.2 g of ice-cemeted permafrost soil from 5 individual samples using the PowerSoil DNA 562 

isolation kit (MoBio laboratories Inc., Solana Beach, CA).  Permafrost samples were from 3 563 

separate cores and at varying depth: core 2, 1 cm; core 4, 1 cm, 3 cm, 5 cm; and core 14, 2 cm. 564 

DNA was amplified using the barcoded universal primers 338F and 806R for the V3–V4 565 

hypervariable region of the 16S rRNA gene and amplicons from 3 reactions were pooled 566 

together for sequencing using the Illumina MiSeq platform. The QIIME package (v1.6.0) was 567 

used for quality control with following criteria: 1) minimum and maximum length of 200 bp and 568 

400 bp; 2) an average of q25 over a sliding window of 25 bp. If the read quality dropped below 569 

q25 it was trimmed at the first base pair of the window and then reassessed for length criteria; 3) 570 

a perfect match to a barcode sequence; 4) a match to E. coli 16S rRNA gene and 5) presence of 571 

the 16S primer sequence used for amplification. Sequences were binned based on sample-572 

specific barcode sequences and trimmed by removal of the barcode and primer sequences 573 

(forward if present and reverse). Chimera removal using chimera.uchime within Mothur was 574 

used to further reduce sequencing error prior to alignment and clustering. Sequences were 575 

aligned to the Silva reference files provided by Morthur (release 119) (Accessed March 2016) 576 

and OTUs were clustered using average-neighbour clustering with a 97% cut-off.   577 

 578 

 579 
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 580 

Heterotrophic Radiorespiration Assay 581 

5 g of permafrost was added to individual microcosms as Steven et al. 2007.  Each 582 

microcosm was performed in triplicate, and included triplicate sterilized controls (autoclaved 583 

twice for 2 hours at 120°C and 1.0 atm, with a 24 h period between autoclavings). Microcosms 584 

were spiked with 0.045 mCi ml-1 (~100,000 disintegrations per minute) of 1-14C acetic acid. 585 

Cold acetic acid was added to a final concentration of 15 mM acetic acid per microcosm in a 586 

total volume of 40 µl. The CO2 trap consisted of 1 M KOH for microcosms incubated at 5°C, 587 

−5°C and 1 M KOH + 20% v/v ethylene glycol for microcosms incubated −10°C and −15°C. For 588 

cryptoendolithic microcosms 3 g of crushed rock from the visibly colonized area of the 589 

sandstone was used for each microcosm, and spiked with cold and radioactive acetate as 590 

described. Measurements of radioactivity were determined by liquid scintillation spectrometry 591 

on a Beckman Coulter (CA, USA) LS 6500 Multi-purpose Scintillation Counter.  592 

Pulse Amplitude Modification PAM methodology 593 

Chlorophyll a fluorescence was measured with a PAM fluorometer (WATER-PAM, 594 

Heinz Walz GmbH). After 30 minutes dark adaptation, initial fluorescence (FO) was measured 595 

and represents the point where all PSII reaction centres are open and the most light energy can be 596 

used for photochemistry rather than being emitted as fluorescence. The sample was then given a 597 

saturation pulse until all reaction centres were closed and electron acceptors saturated, all light 598 

energy is given off as maximal fluorescence in this state (FM). Photosynthetic efficiency of 599 

photosystem II (PSII) was measured as FV/FM, where variable fluorescence (FV) is calculated as 600 

the difference between initial fluorescence (FO) and maximal fluorescence (FM).  601 

Isolation and characterization of photoautotrophs  602 
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1g of permafrost soil, or of the colonized band of the cryptoendolith was sampled, 603 

homogenized and added to a sterile tube containing 3mL of 0.1% sterile sodium pyrophosphate 604 

and 0.5g of glass beads. Following 1 min of vortexing, 100µL of the suspended cell solution was 605 

used to inoculate liquid media and agar plates of BG11, CHU-10 and SNAX media. Plates and 606 

liquid enrichment cultures were incubated at 5°C and 20°C, in the presence of 24 hours 6400K 607 

full spectrum light (T5HO bulb, Sunblaster) until growth was observed. Isolates were then 608 

characterized for growth at −5°C, 0°C, 5°C and 20°C, as well as with 5% NaCl and 5% glycerol 609 

added to media.  610 

  611 
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Figure and Table Legends  823 

 824 

Figure 1. University Valley permafrost and cryptoendolith niches 825 

A. University Valley; B. University Valley cryptoendolith colonized zone, with adjacent mm 826 

ruler; C-D. Field cryptoendolith photos C. An exposed cryptoendolith in University Valley after 827 

a snowfall event D. Cryptoendolith community underneath the rocks surface utilizing low 828 

sunlight reflected by sandstone wall 829 

 830 

Figure 2. Heterotrophic and photosystem activity at sub-zero temperatures 831 

A. 14C acetate mineralization detectable in cryptoendolithic at all temperatures tested, and in 832 

permafrost samples only above 5ºC. B-C. Diplosphaera (B) and Stichococcus (C) isolates 833 

demonstrating chloroplast autofluorescence activity after 200 days culturing at −5ºC.   834 

 835 

Figure 3. Functional profiles of University Valley cryptoendoliths and permafrost 836 

Level 1 SEED subsystems found in the cryptoendolith and permafrost metagenomes. Indicated 837 

by * are subsystems which were found to be biologically important, as inferred from statistical 838 

probability modelling using Statistical Analysis of Metagenomic (STAMP) v 2.0.8  (Parks and 839 

Beiko 2010) using  P-value <0.05,  for ratio of proportions (RP) effect size <2.00 and difference 840 

of proportions effect size <2.5.  841 

 842 

Figure 4. Ordination of functional community composition in University Valley  843 

Principle coordinate analyses using Bray-Curtis distances of the relative abundance of level 2 844 

SEED subsystems in the University Valley permafrost (Upper) and cryptoendolith (Lower) 845 
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compared with other publically available metagenomes.  Metagenomes used for comparison are 846 

outlines in Table S3. Arrows represent the relative abundance of level 2 subsystems.  847 

 848 

Figure 5. Predicted functions in University Valley permafrost and cryptoendolithic systems 849 

 850 

Table 1. University Valley permafrost and cryptoendolith metagenome statistics 851 

 852 

Table 2. Abundant phyla and classes in University Valley metagenomes 853 

Only Phyla which represent >1% of total reads are presented here. 854 

 855 

Table 3. Key Nutrient Cycling gene(s) 856 

No. of reads of key genes based on 60% protein identity, an e-value cut-off of e-5 and a 857 
minimum alignment length of 15 aas against the GenBank database.  858 

 859 

 860 
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Figure 1. University Valley permafrost and cryptoendolith niches 
A. University Valley; B. University Valley cryptoendolith colonized zone, with adjacent mm ruler; C-D. Field 

cryptoendolith photos C. An exposed cryptoendolith in University Valley after a snowfall event D. 
Cryptoendolith community underneath the rocks surface utilizing low sunlight reflected by sandstone wall 
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Figure 2. Heterotrophic and photosystem activity at sub-zero temperatures 
A. 14C acetate mineralization detectable in cryptoendolithic at all temperatures tested, and in permafrost 
samples only above 5ºC. B-C. Diplosphaera (B) and Stichococcus (C) isolates demonstrating chloroplast 

autofluorescence activity after 200 days culturing at −5ºC.   
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Figure 3. Functional profiles of University Valley cryptoendoliths and permafrost  
Level 1 SEED subsystems found in the cryptoendolith and permafrost metagenomes. Indicated by * are 

subsystems which were found to be biologically important, as inferred from statistical probability modelling 
using Statistical Analysis of Metagenomic (STAMP) v 2.0.8  (Parks and Beiko 2010) using  P-value 

<0.05,  for ratio of proportions (RP) effect size <2.00 and difference of proportions effect size <2.5.  
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Figure 4. Ordination of functional community composition in University Valley  
Principle coordinate analyses using Bray-Curtis distances of the relative abundance of level 2 SEED 

subsystems in the University Valley permafrost (Upper) and cryptoendolith (Lower) compared with other 
publically available metagenomes.  Metagenomes used for comparison are outlines in Table S3. Arrows 

represent the relative abundance of level 2 subsystems. \r\n  
184x202mm (300 x 300 DPI)  
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Figure 5. Predicted functions in University Valley permafrost and cryptoendolithic systems  
247x183mm (300 x 300 DPI)  
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Table 1. University Valley permafrost and cryptoendolith metagenome statistics 
Parameter Cryptoendolith 

Metagenome 
Permafrost 

Metagenome 
Total no. of sequences before QC 1,293,156 3,124,825 
No. of sequences that passed QC 1,112,128 737,531 
Total sequence size (bp) after QC 309,810,374 bp 211,084,258 bp 
Av. sequence length (bp) after QC 278 bp 286 bp 
No. of predicted/identified protein features 770,392/ 193,269 146,715/ 63,452 
No. of predicted/identified rRNA features 7,444/ 441 41,691/ 242 
No. of identified functional categories 128,195 42,837 
GC content (%) 50 % 54 % 
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Table 2. Abundant phyla and classes in University Valley metagenomes 

Domain Phylum [class] 
Percent (%) abundance 
cryptoendolith 
metagenome 

Percent (%) abundance 
permafrost metagenome 

    
Eukaryota  53.8 12.2 
 Ascomycota 45.0 9.0 
      [Eurotiomycetes] 24.1 2.8 
      [Sordariomycetes] 10.0 1.7 
      [Dothideomycetes] 5.2 3.9 
      [Leotiomycetes] 4.1 0.3 
 Chlorophyta 3.4 <0.1 
      [Trebouxiophyceae] 1.4 0 
      [Chlorophyceae] 1.2 <0.1 
 Basidiomycota 2.2 0.5 
      [Tremellomycetes] 1.7 <0.1 
 Streptophyta 2.0 0.1 
    
Bacteria  45.0 85.6 
 Actinobacteria  19.8 63.7 
                (order) Actinomycetales 17.4 63.2 
 Proteobacteria 10.3 13.6 
      [Alphaproteobacteria] 4.6 5.2 
      [Gammaproteobacteria] 2.0 2.8 
      [Deltaproteobacteria] 1.9 0.4 
      [Betaproteobacteria] 1.6 5.0 
 Bacteroidetes 3.9 1.6 
      [Sphingobacteria] 1.3 0.4 
      [Cytophagia] 1.2 0.2 
 Firmicutes  2.2 5.9 
      [Clostridia] 1.2 0.8 
      [Bacilli] 1.0 5.0 
 Chloroflexi 2.0 0.0 
 Acidobacteria 1.9 0.1 
 Cyanobacteria 1.7 0.3 
                (order) Chroococcales 0.8 0.2 
                (order) Nostocales 0.4 <0.1 
                (order) Oscillatoriales 0.2 <0.1 
                (order) Gloeobacterales 0.2 <0.1 
    
Viruses  0.5 2.0 
Archaea  0.4 <0.1 
Only Phyla which represent >1% of total reads are presented here.  
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Table 3. Key Nutrient Cycling gene(s) 
 Pathway Key gene(s) Cryptoendolith 

No. of reads  
Permafrost 
No. of reads 

Carbon- 
Autotrophy 

Calvin-Benson 
Cycle 

ribulose-1,5-bisphosphate 
carboxylase/oxygenase 
phosphoribulokinase 

127 
 
14 

0 
 
0 

Reductive TCA 
Cycle 

2-oxoglutarate:ferredoxin oxidoreductase 
ATP citrate lyase (aclB) 

0 
7 

0 
0 

Reductive acetyl-
coA pathway 

CO dehydrogenase/acetyl-CoA synthase (CO-
DH) 

0 0 

Hydroxypropionate 
cycle   

acetyl-CoA/propionyl-CoA carboxylase (pcc) 
malonyl coA reductase 

0 
0 

0 
0 

Carbon  Methane Oxidation Methane monooxygenase (mmoX)  
Particulate methane monoxygenase (pmoA) 

13 
0 

0 
0 

Methanogenesis Methyl coenzyme M reductase (mcrA) 0 0 

Acetogenesis Formyltetrahydrofolate synthetase (FTHFS) 0 1 
Carbon monoxide  CO dehydrogenase/acetyl-CoA synthase CO-

DH  
0 0 

Glyoxalate pathway isocitrate lyase 
malate synthase 

29 
63 

326 
78 

Nitrogen  Nitrogen Fixation Nitrogenase Reductase (nifH) 0 0 
Nitrification  Ammonia monooxygenase (amoA) 3 0 
Denitrification  Nitrate Reductase (narG, nasA, napA) 

Nitrite reductase (nirK, nirS, nirA, nirB, nrfA) 
Nitric Oxide reductase (norB, norVW) 
Nitrous Oxide reductase (NosZ) 

66 
62 
0 
0 

62 
56 
0 
0 

Mineralization Glutamate dehydrogenase (gdh) 
Urea amidohydrolase (ureC) 

120 
1 

89 
0 

Phosphorus Phosphate 
metabolism 

Alkaline Phosphatases (phoA and PhoX)  
Phosphate-specific transport  (Pst operon) 

81 
103 

3 
861 

Phosphonate 
metabolism 

Phosphonoacetaldehyde hydrolase (phnX)  0 1 

Polyphosphonate 
metabolism 

(polyphosphatase kinase (ppK) 
Exopolyphosphatase (ppX) 

0 
27 

0 
7 

No. of reads of key genes based on 60% protein identity, an e-value cut-off of e-5 and a 
minimum alignment length of 15 aas against the GenBank database 
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