Sensor Technologies on Flexible Substrates: In-Space Manufacturing

Jessica Koehne
Center for Nanotechnology
NASA Ames Research Center
4/26/2016
In-Space Manufacturing

• No need to wait for resupply
• Fabrication on-demand
• Printers and Functional Inks
• Compliant or woven substrates allow easy integration into flexible or compliant surfaces

• Technologies include:
 – Energy generation & storage
 – Communication
 – Integrated circuits
 – Sensors
Printing Materials and Methods

Manufacturing
- Roll-to-Roll
- Screen Printing
- Gravure
- Transfer
 - **INK JET**
 - **PLASMA JET**

Substrates
- Silicon
- Kapton
- Metal
- Glass
- Ceramic
- **PAPER**
- **POLYMER**

Inks
- Conductor
- Semiconductor
- Insulator
- Passivation
- Catalyst
- Biological agent

Carbon Nanotube Based eInk and Printing
Advantages of Paper

• Sensors fabricated on paper
 • Gas sensor, chemical sensor, bio sensor, and strain gauge
 • Detection of structural defects and cracks, structural health monitoring
 • Commercial: Intelligent packaging, advertising banner, newspaper

• Features
 • Flexible, bendable, foldable
 • Bio-degradable: green technology
 • Robust at cryogenic temperatures
 • Role-to-role printing or ink-jet printing process
 • Cheaper than solid-state sensors
 • Biomedical: Single-time use, disposable
Printing Approaches

Fountain Pen:

Inkjet:

Atmospheric Pressure Plasma Jet:
Atmospheric Pressure Plasma Jet

- Glass tube or nozzle; two copper band electrodes (20 mm apart)
- Helium atmospheric plasma
 - can introduce different gases for chemistry control (e.g. hydrogen for reduction)
- Nanocolloids, organic materials etc. transported as aerosol by carrier gas
- Spot size can be altered by changing print head nozzle diameter
- Multiple jets for different coatings
Technology Demo: Chemical Sensing

- Humidity and NH$_3$ Sensor on Paper

- NH$_3$ Sensor on Textiles
Technology Demo: Biological Sensing

- Sensors on Paper
- Sensor on Polyimide
Sensors on Flexible Substrates for Next Generation EVA Suit

- Human health monitoring
 - Skin Wearable Sensors
 - Sweat, saliva, urine, blood
 - Health & human performance
 - pH, proteins, ions, etc.
 - In Suit Sensors
 - Breath
 - Health & human performance
 - O₂, CO₂, acetone, NO₂
- Environmental monitoring
 - Gas or vapor
 - CO, NH₃, hydrazine
- Structural Health Monitoring
 - Strain
Acknowledgements

NASA ARC
- Jinwoo Han
- Ramprasad Gandhiraman
- Beomseok Kim
- Emily Rand
- Rakesh Gupta
- Ruchi Pandya
- Mikalojus Brazdziunas
- Josephine Cunningham
- Nicholas Brenes
- Tony Ricco
- Jing Li
- M. Meyyappan

Collaborators
- Gregory Whiting – PARC
- Richard Crooks – UT Austin
- David Estrada – Boise State