Alternative to Nitric Acid Passivation

NASA Corrosion Technology Laboratory (CTL) & NASA Technology Evaluation for Environmental Risk Mitigation (TEERM)

2016 INTERNATIONAL WORKSHOP ON ENVIRONMENT AND ALTERNATIVE ENERGY
October 20, 2016
Background

- Corrosion is an extensive problem that affects the National Aeronautics and Space Administration (NASA) and European Space Agency (ESA).
- The deleterious effects of corrosion result in steep costs, asset downtime affecting mission readiness, and safety risks to personnel.
- It is vital to reduce corrosion costs and risks in a sustainable manner.
Risk

- Nitric acid passivation results in fumes that contain nitrogen dioxide and nitrogen oxide (NOx) emissions which are considered greenhouse gases; Best Available Technology (BAT) to be employed to control nitric acid and NOx emissions.

- Nitric acid passivation requires 25% or 50% concentration of the strong acid.

- Wastewater generated from the passivation process is regulated under the U.S. Environmental Protections Agency’s (EPA) Metal Finishing Categorical Standards.

- Nitric acid can remove beneficial heavy metals (nickel, chromium, etc.) that give stainless steel its desirable properties.
Specification

- Citric acid passivation is allowed per:
 - ASTM A 967 (Standard Specification for Chemical Passivation Treatments for Stainless Steel Parts)
 - AMS 2700 (Passivation Treatments for Corrosion-resistant Steel)

- Citric acid passivation is not a new technology; it was developed (many years ago) for the beverage industry in Germany to process containers that were free of iron which causes an unwanted taste to the beverage.

- While citric acid use has become more prominent in industry in the U.S., there is little evidence that citric acid is a technically sound passivating agent, especially for the unique and critical applications encountered by NASA and ESA.
Benefits of Citric Acid Passivation

- Citric acid is a bio-based material that helps government agencies meet the procurement requirements of the Farm Security and Rural Investment Act of 2002.
- There are no toxic fumes created during the citric acid passivation process making it safer for workers.
- Nitric acid passivation requires 25% or 50% concentrations of the strong acid which are extremely corrosive and hazardous to workers.
- Citric acid removes iron from the surface more efficiently than nitric acid and therefore uses much lower concentrations reducing material costs.
- Citric acid-based processing baths retain their potency for longer periods requiring less frequent refilling and reduced volume and potential toxicity of effluent and rinse water.
Objective

- The primary objective of this effort is to qualify citric acid as an environmentally-preferable alternative to nitric acid for passivation of stainless steel alloys.
Test Specimen Preparation

The NASA Corrosion Technology Lab followed the United Space Alliance (USA) procedure for passivation:

- **Grit Blast** (Iron Media)
- **Degrease - Initial Clean** (Acetone Wipe)
- **Second Degreasing** (Bruhlin 815 GD)
- **Rinse #1** (DI Water)
- **Rinse #2** (Spray Bottle - DI Water)
- **Caustic (Alkaline) Cleaning** (Turco 4090)
- **Rinse #3** (DI Water)
- **Rinse #4** (Spray Bottle - DI Water to Ensure Appropriate Water Break is Present)
- **Citric Acid Passivation** (Parameters Vary)
- **Rinse #5** (DI Water)
- **Rinse #6** (Spray Bottle - DI Water)
- **Check pH of surface** (pH 6.0 to 8.0)
- **Dry** (Gaseous Nitrogen)
- **Check pH of surface** (pH 6.0 to 8.0)
- **Dry** (Gaseous Nitrogen)
Parameter Optimization

Test panels of each stainless steel alloy were prepared using various process parameters

• Citric Acid Concentration: 4% ONLY in this phase
• Immersion Times: 60, 90, and 120 minutes
• Bath Temperatures: 38°C (100°F), 60°C (140°F), and 82°C (180°F)
• Salt Spray Testing per ASTM B 117
• Corrosion Resistance Evaluation every 168 hours up to 504 hours of salt spray testing
• Parameters resulting in the best corrosion resistance shall be used for preparation of that substrate’s test panels for the remainder of the testing
<table>
<thead>
<tr>
<th>Alloy</th>
<th>Passivation</th>
<th>Concentration (%)</th>
<th>Bath Temperature (°C)</th>
<th>Dwell Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL6XN</td>
<td>Nitric Acid</td>
<td>22.5</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Citric Acid</td>
<td>4</td>
<td>38</td>
<td>120</td>
</tr>
<tr>
<td>A286</td>
<td>Nitric Acid</td>
<td>50</td>
<td>64</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Citric Acid</td>
<td>4</td>
<td>49</td>
<td>120</td>
</tr>
<tr>
<td>304</td>
<td>Nitric Acid</td>
<td>22.5</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Citric Acid</td>
<td>4</td>
<td>49</td>
<td>120</td>
</tr>
<tr>
<td>17-4PH</td>
<td>Nitric Acid</td>
<td>50</td>
<td>64</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Citric Acid</td>
<td>4</td>
<td>38</td>
<td>30</td>
</tr>
<tr>
<td>316</td>
<td>Nitric Acid</td>
<td>22.5</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Citric Acid</td>
<td>4</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>321</td>
<td>Nitric Acid</td>
<td>22.5</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Citric Acid</td>
<td>4</td>
<td>82</td>
<td>60</td>
</tr>
<tr>
<td>410</td>
<td>Nitric Acid</td>
<td>50</td>
<td>64</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Citric Acid</td>
<td>4</td>
<td>82</td>
<td>60</td>
</tr>
<tr>
<td>440C</td>
<td>Nitric Acid</td>
<td>50</td>
<td>64</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Citric Acid</td>
<td>4</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>15-5PH</td>
<td>Nitric Acid</td>
<td>50</td>
<td>64</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Citric Acid</td>
<td>4</td>
<td>82</td>
<td>60</td>
</tr>
<tr>
<td>17-7 PH</td>
<td>Nitric Acid</td>
<td>50</td>
<td>64</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Citric Acid</td>
<td>4</td>
<td>82</td>
<td>60</td>
</tr>
</tbody>
</table>

Note 1 = Citric acid parameters were initially determined by USA
All other citric acid parameters were determined by KSC Corrosion Lab
Testing

<table>
<thead>
<tr>
<th>Test</th>
<th>Test Methodology References</th>
<th>Acceptance Criteria</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-Cut Adhesion by Wet Tape</td>
<td>ASTM D 3359</td>
<td></td>
<td>NASA Corrosion Technology Lab</td>
</tr>
<tr>
<td>Tensile (Pull-off) Adhesion</td>
<td>ASTM D 4541</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyclic Corrosion Resistance</td>
<td>GMW 14872</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atmospheric Exposure Testing</td>
<td>ASTM D 610</td>
<td></td>
<td>NASA Corrosion Technology Lab</td>
</tr>
<tr>
<td></td>
<td>ASTM D 714</td>
<td></td>
<td>Atmospheric Exposure Site</td>
</tr>
<tr>
<td></td>
<td>NASA-STD-5008</td>
<td>Alternative performs as well or better than control process</td>
<td></td>
</tr>
<tr>
<td>Stress Corrosion Cracking</td>
<td>ASTM B 117</td>
<td></td>
<td>NASA Corrosion Technology Lab</td>
</tr>
<tr>
<td></td>
<td>ASTM E 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASTM E 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASTM G 38</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASTM G 39</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ASTM G 44 MSFC-STD-3029</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatigue*</td>
<td>ASTM E 466</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrogen Embrittlement**</td>
<td>ASTM F 519</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* = Only one alloy was tested; 17-4PH
** = Test specimens were made of AISI 4340 alloy steel, this is considered worst case
Overall Test Results

4% Citric Acid

<table>
<thead>
<tr>
<th>Test</th>
<th>Citric Acid Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-Cut Adhesion by Wet Tape</td>
<td>Performs as well or better than control process for all alloys</td>
</tr>
<tr>
<td>Tensile (Pull-off) Adhesion</td>
<td>Performs as well or better than control process for all alloys</td>
</tr>
<tr>
<td>Cyclic Corrosion Resistance</td>
<td>Performs as well or better than control process for all alloys</td>
</tr>
<tr>
<td>Atmospheric Exposure Testing^1</td>
<td>Performs as well or better than control process for the majority of alloys</td>
</tr>
<tr>
<td>Stress Corrosion Cracking</td>
<td>Performs as well or better than control process for all alloys</td>
</tr>
<tr>
<td>Fatigue^2</td>
<td>Performs as well or better than control process for all alloys</td>
</tr>
<tr>
<td>Hydrogen Embrittlement^3</td>
<td>Performs as well or better than control process for all alloys</td>
</tr>
</tbody>
</table>

1 = 17-4PH panels processed through the control process performed slightly better
2 = Only one alloy was tested; 17-4PH
3 = Test specimens were made of AISI 4340 alloy steel, this is considered worst case
Expanded Scope to Evaluate 7% and 10% Citric Acid Concentration

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Passivation</th>
<th>Concentration (%)</th>
<th>Bath Temperature (°C)</th>
<th>Dwell Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>304</td>
<td></td>
<td>4 7 10</td>
<td>38 60 82</td>
<td>60 90 120</td>
</tr>
<tr>
<td>316</td>
<td>*</td>
<td>4* 7 10</td>
<td>38 60 82</td>
<td>60 90 120</td>
</tr>
<tr>
<td>321</td>
<td>*</td>
<td>4* 7 10</td>
<td>38 60 82</td>
<td>60 90 120</td>
</tr>
<tr>
<td>13-8PH</td>
<td></td>
<td>4 7 10</td>
<td>38 60 82</td>
<td>60 90 120</td>
</tr>
<tr>
<td>15-5PH</td>
<td>*</td>
<td>4* 7 10</td>
<td>38 60 82</td>
<td>60 90 120</td>
</tr>
<tr>
<td>17-4PH</td>
<td></td>
<td>4 7 10</td>
<td>38 60 82</td>
<td>60 90 120</td>
</tr>
<tr>
<td>17-7PH</td>
<td>*</td>
<td>4* 7 10</td>
<td>38 60 82</td>
<td>60 90 120</td>
</tr>
<tr>
<td>A286</td>
<td></td>
<td>4 7 10</td>
<td>38 60 82</td>
<td>60 90 120</td>
</tr>
<tr>
<td>AL6XN</td>
<td></td>
<td>4 7 10</td>
<td>38 60 82</td>
<td>60 90 120</td>
</tr>
</tbody>
</table>

* Optimization testing completed in a previous project

http://www.koslow.com
Test Specimen Preparation

The NASA Corrosion Technology Lab followed the United Space Alliance (USA) procedure for passivation:

1. Grit Blast (Iron Media)
2. Degrease - Initial Clean (Acetone Wipe)
3. Second Degreasing (Bruhlin 815 GD)
4. Rinse #1 (DI Water)
5. Rinse #2 (Spray Bottle - DI Water)
6. Caustic (Alkaline) Cleaning (Turco 4090)
7. Rinse #3 (DI Water)
8. Rinse #4 (Spray Bottle - DI Water to Ensure Appropriate Water Break is Present)
9. Citric Acid Passivation (Parameters Vary)
10. Rinse #5 (DI Water)
11. Rinse #6 (Spray Bottle - DI Water)
12. Check pH of surface (pH 6.0 to 8.0)
13. Dry (Gaseous Nitrogen)
Parameter Optimization

Test panels of each stainless steel alloy were prepared using various process parameters

- Citric Acid Concentration: 4% (limited alloys), 7% and 10%
- Immersion Times: 60, 90, and 120 minutes
- Bath Temperatures: 38°C (100°F), 60°C (140°F), and 82°C (180°F)
- Salt Spray Testing per ASTM B 117
- Corrosion Resistance Evaluation after 2 hours of salt spray testing
 - SAE AMS 2700 & ASTM A967 = No signs of red rust or staining associated with free iron particles shall be observed
- Salt Spray Testing continued for an additional 166 hours
Salt Spray Results

- 168 hours of exposure
- 3 panels were tested per parameter set
- **RED** = 1 or more panels showed evidence of rusting
- **GREEN** = all 3 panels showed no signs of rusting

Table

<table>
<thead>
<tr>
<th>Alloy</th>
<th>Passivation</th>
<th>Concentration</th>
<th>Bath Temperature</th>
<th>Dwell Time (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>60</td>
</tr>
<tr>
<td>304</td>
<td>Citric Acid</td>
<td>4%</td>
<td>38</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7%</td>
<td>60</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>60</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>✔️</td>
</tr>
<tr>
<td>316</td>
<td>Citric Acid</td>
<td>4%*</td>
<td>38</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7%</td>
<td>60</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>60</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>✔️</td>
</tr>
<tr>
<td>321</td>
<td>Citric Acid</td>
<td>4%*</td>
<td>38</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7%</td>
<td>60</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>60</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>✔️</td>
</tr>
<tr>
<td>13-8PH</td>
<td>Citric Acid</td>
<td>4%</td>
<td>38</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7%</td>
<td>60</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>60</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>✔️</td>
</tr>
<tr>
<td>15-5PH</td>
<td>Citric Acid</td>
<td>4%*</td>
<td>38</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7%</td>
<td>60</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>60</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>✔️</td>
</tr>
<tr>
<td>17-4PH</td>
<td>Citric Acid</td>
<td>4%</td>
<td>38</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7%</td>
<td>60</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>60</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>✔️</td>
</tr>
<tr>
<td>17-7PH</td>
<td>Citric Acid</td>
<td>4%*</td>
<td>38</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7%</td>
<td>60</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>60</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>✔️</td>
</tr>
<tr>
<td>A286</td>
<td>Citric Acid</td>
<td>4%</td>
<td>38</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7%</td>
<td>60</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>60</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>✔️</td>
</tr>
<tr>
<td>AL6XN</td>
<td>Citric Acid</td>
<td>4%</td>
<td>38</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7%</td>
<td>60</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10%</td>
<td>60</td>
<td>✔️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>✔️</td>
</tr>
</tbody>
</table>

* Optimization testing completed in a previous project
Conclusions

- Regardless of alloy, higher citric acid concentrations, temperatures, and bath dwell times yielded the best results.
- There is clear evidence that 38°C (100°F) had a significantly greater number of failures than either 60°C (140°F) or 82°C (180°F).
- When differentiating between 60°C and 82°C, there is not enough proof to signify that 82°C is better than 60°C because there is only a 1 percent difference in the failure data.
- Increasing temperature increased difficulty in panel processing.
- When scaled to an industrial process, the 82°C baths would require constant replenishing.
- Longer immersion times showed a positive trend in pass rates; 120 minutes may be the optimal immersion time.
Next Phase – Validation Testing

<table>
<thead>
<tr>
<th>Test</th>
<th>Corrosion Protection</th>
<th>Requirement</th>
<th>Test Methodology</th>
<th>Evaluation</th>
<th>Acceptance Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salt Spray</td>
<td>Passivation Only</td>
<td>SAE AMS 2700</td>
<td>ASTM B 117</td>
<td>ASTM D 610</td>
<td>Alternative performs as well or better than control process</td>
</tr>
<tr>
<td></td>
<td>Passivation + Primer & Topcoat</td>
<td>NASA-STD-5008</td>
<td>ASTM B 117</td>
<td>ASTM D 1654</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Passivation + Primer & Topcoat</td>
<td>NASA-STD-5008</td>
<td></td>
<td>ASTM D 1654</td>
<td></td>
</tr>
</tbody>
</table>
Questions?

Kurt Kessel
Kurt.r.kessel@nasa.gov
321-867-8480