Application of Compressive Sensing to Gravitational Microlensing Data
- and -
Implications for Miniaturized Space Observatories

Asmita Korde-Patel1,2, Richard K. Barry1, and Tinoosh Mohsenin2

1NASA Goddard Space Flight Center, Greenbelt, MD, USA
2University of Maryland, Baltimore County, Baltimore, MD, USA
Outline

- Gravitational Microlensing
- Compressive Sensing (CS) Motivation
- Compressive Sensing (CS) Theory
- Single Lens Microlensing Events
- Simulation Results
- Conclusion and Future work
Gravitational Microlensing

- Technique to detect exoplanets and other astrophysical entities

Credit: Space Telescope Science Institute
Current Techniques Limitations

- High rate sampling required to acquire the desired resolution
 - Miniaturized space observatories: Data bandwidth limitation
- Need high cadence for acquiring each image
 - If high cadence is not achieved, an exoplanet transition with a short period can be missed
- Miniaturized space observatories have power and on-board memory limitation
- **How do we achieve high resolution images at a high cadence by acquiring only a few samples?**
Compressive Sensing (CS) Motivation

- Acquiring each image pixel individually (sampling at the Nyquist rate) is wasteful when the information can be encoded in only a select few samples due to its sparse nature.
- Exploit sparsity in images.
- Microlensing Events are sparse in spatial domain when differenced.
 - That is, at any given time only the stars exhibiting a microlensing event vary in flux.
 - Only those stars are evident when differenced with a reference image.
CS Theory

Each sub measurement matrix gets transformed into a 1D signal representing a row in the measurement matrix.

- M sub measurement matrices
- Reconstruct original image, given y vector and the associated (sub) measurement matrix for each element in y
 - \(Y_{mx1} = \Phi_{mxn}x_{nx1} \)
 - Optimization (L1 minimization) and greedy algorithms
- A unique solution is obtained only if the original image is sparse in some domain

Astronomical Data Analysis Software and Systems (ADASS) XXVI
Trieste, Italy, October 19th, 2016
Single Lens Microlensing Events

- Source star magnification only due to lensing star
- Magnification at each time is dependent on:
 \(u_0 \): lens-source separation in terms of Einstein’s ring radius
 \(t_0 \): peak magnification time
 \(t_e \): Einstein’s ring radius crossing time

Top: Original spatial domain image at time, \(t = 0 \)

Bottom: Original time domain image with magnification at center pixel plus a 3 pixel radius
Simulation Setup

All Simulations are performed in **Python**

Gravitational Microlensing Parameters

- Single lens event
- \(u_0 = 0.1 \)
- Total 30 time samples
 - Peak magnification at time value = 14
 - Einstein’s ring crossing time at time value = 29

CS Parameters

- Image size = 25x25
 - \(N = 25 \times 25 = 625 \) pixels
- Measurements, \(M \), is varied from 2\% of \(N \) to 6\% of \(N \)
 - \(\% \) Measurements = \(\frac{M}{N} \) x 100
- Sparsity: number of non-zero (or significant value) pixels = 1
- Measurement matrix, \(\theta \): Bernoulli Random with 0’s and 1’s
 - 100 Monte Carlo simulations to vary measurement matrix each time
CS Reconstruction

Green: Original signal
Blue: Reconstructed signal
Red: Error bars

Top: 2% measurements
Middle: 3% measurements
Bottom: 4% measurements

% Error at t0 over center pixel with 3 pixel radius

% Error at peak time, t0

% Measurements =

\[
\frac{\text{# of measurements}}{\text{# of total pixels}} \times 100
\]

Astronomical Data Analysis Software and Systems (ADASS) XXVI
Trieste, Italy, October 19th, 2016
Resolution Accuracy

<table>
<thead>
<tr>
<th>% Measurements $\frac{M}{N} \times 100$</th>
<th>Error Difference in Reconstruction at t_0</th>
<th>Average Standard deviation over all t</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4.19</td>
<td>1.6</td>
</tr>
<tr>
<td>3</td>
<td>0.00009</td>
<td>0.52</td>
</tr>
<tr>
<td>4</td>
<td>0.00013</td>
<td>0.00096</td>
</tr>
<tr>
<td>5</td>
<td>0.00013</td>
<td>0.00078</td>
</tr>
<tr>
<td>6</td>
<td>0.00016</td>
<td>0.00073</td>
</tr>
</tbody>
</table>

- Change in magnification at peak time, t_0, is 0.5 units of flux
 - Resolution error $<< 0.5$ to capture changes in microlensing curve

- 4% of N measurements gives optimal error, along with a low standard deviation, providing lower uncertainty
Conclusions and Future Work

• For a clean image, with very low sparsity, only 4% of Nyquist rate samples are required to reconstruct the image
 • **Significant reduction in data volume and power**
 • **Greatly benefit space flight observatories**

• Future work will include studying
 • Point spread functions and its implications for CS
 • Dense, crowded field images
 • Difference imaging for CS applications
 • Binary lens systems
Acknowledgement

- The Digital Signal Processing Technology Group, Code 564
 Instrument Electronics Development Branch, NASA
 Goddard Space Flight Center
References