Traveler
Trustworthy Autonomy

October 21st, 2016

Mark Skoog
Principle Investigator Automatic Systems
Armstrong Flight Research Center
Research Timeline

- **1980**: Automated Maneuvering Attack System (AMAS)
 - AFTI/F-16
 - Advanced Fighter Technology Integration
 - AFTI & ACAT/F-16
 - Automated Collision Avoidance Technology

- **2000**: Automated Collision Avoidance
 - Air
 - Integrated

- **2010**: Ground Collision Avoidance
 - Small UAS
 - GA
 - Quad-Rotor

- **2016**: Dedicated Safety Work
 - Platform Diversity

SUAV/iGCAS/SR22
- Improved Collision Avoidance System

NASA
Avoid Collisions
Do Not Impede the Pilot
Flight 18 event 6, 45 kts, 100' buffer
SR22 Hardware in the Loop Sim
The Challenge of Autonomy

• Verification & Certification of a Complex System
• A Possible Solution – Run-Time Assurance (RTA)
Safety Systems

- Predict Escape Trajectories
- Predict Future Threat State
- Determine Need to Evade & Threat Lethality
- Evade
- Notify

- Evasion Types
- Maneuvering Capability
- Evasion Trajectory Estimations
- Associated Uncertainties

- Evasion Trajectory Estimations
- Associated Uncertainties

- Scan/Track Pertinent Threat
- Simplify Threat Profile
- Associated Uncertainties

- Minimum Approach
- Integrity Check
- Time to Evade
- Command Evasion

- Intactness Check
- Execute Evasion

- Alert
- Record
- Recall

- Sense Own-State & Atmospherics
 - Sufficient to support trajectory estimation

- Sense Collision Threat
 - Terrain
 - Aircraft
 - Weather
 - Missiles

- Common Interface
- Autopilot Coupler

- Pilot Controls
 - Mode Selection
 - Interface
Multi-Monitor RTA
FAA/ASTM Collaboration

• ASTM Committee WK53403
 • Develop a standard practice that safely bounds the flight behavior of autonomous UAS.
 • Originated from our collaboration with them regarding Auto GCAS and integrity management work on early autonomy concepts
 • FAA has asked up to support the ASTM by sharing our techniques, practices and lessons learned as we develop EVAA

• Dec 16 Draft for Public Review
• Feb 17 Published
Multi-Monitor RTA Framework
Multi-Monitor RTA Framework

UNTRUSTED Systems

Sensors

Integrity Monitor

Recovery Control

Switch

Decider

SP Monitor

Flight Control System

SP Eyes

SP Controller
Behavioral Control Level
- Controllers
 - Avoidance Maneuvers
 - Rate/Att. Capture
 - Waypoint Following
 - Altitude Capture
 - Aircraft Lighting

Mission Interoperability Control Level
- Controllers
 - ATC
 - UTM

Aviate Control Level
- Controllers
 - Avoidance Maneuvers
 - Rate/Att. Capture
 - Waypoint Following
 - Altitude Capture

Emergency / Degraded Control Level
- Controllers
 - Forced Landing
 - Where to Land
 - LoC Prevention
 - LoC Recovery

Outer-Loop Control Level
- Controllers
 - Pitch Autopilot
 - Roll Autopilot
 - Speed Autopilot

Inner-Loop Control Level
- Controllers
 - Stability & Control
 - Structural Limiting
 - Envelope Protection

Communicate
- Controllers
 - ATC
 - UTM

Monitors
- Well Clear
 - Rules of flight

Aviate & Navigate
- Monitors
 - Communications

Monitors
- Collision Avoidance
 - Ground
 - Obstacle
 - Air Traffic
 - People & Property
 - Weather Avoidance
 - Person Avoidance
 - Population Avoidance

Monitors
- LOC
- Power Plant

Monitors
- OLIV
 - A/C State
 - Dynamic Consistency
 - Is this OLIV?

Monitors
- Sensors
 - Air Data
 - Accelerometers
 - Gyros
 - Angle of Attack
 - Sideslip
 - FCS
 - Watchdog Timer
 - Output Crosscheck
 - Control Surfaces

Monitors
- OLIV
 - A/C State
 - Dynamic Consistency
 - Is this OLIV?

Monitors
- Sensors
 - Air Data
 - Accelerometers
 - Gyros
 - Angle of Attack
 - Sideslip
 - FCS
 - Watchdog Timer
 - Output Crosscheck
 - Control Surfaces

Still in Work
Interlinked RTA Control Framework

Mission Interoperability

Behavioral

Aviate

Outer Loop

Inner Loop

Emergency / Degraded
I'm thinking the behavioral level is a lesser set of the aviate
Multi-Monitor/Multi-Layered Comprehensive RTA

Phase 1 – All data base driven

Communicate
Mission Interoperability Control Level
- Emergency Procedures
- ATC
- UTM
- Squad/Flight

Aviate & Navigate
Aviate Control Level
- Decider
- Higher-Order Mission Guidance
 - Collision Avoidance
 - Ground
 - Obstacle
 - Atmo
 - People
 - Property
- Weather Avoidance
- Population Avoidance

Emergency / Degraded Control Level
- Decider
- Forced Landing
- Where to Land
- LoC Prevention
- LoC Recovery

Thrust
- Controllers – Surfaces, Power-Plant & Thrust Vectoring
 - Structural Limit
 - Regression Modes
 - Stability & Control

Link
Communications

Behavioral Control Level
- Avoidance Maneuvers
- Lighting

Airspace Boundaries
- Well Clear
 - Well CtrlSep, Asmc.
 - Rules of Flight
- Personal Space
- Privacy Rights
- Property Rights

I'm thinking the behavioral level is a lesser set of the aviate.
The Big Picture - Traveler

Trustworthy Autonomy

Certification
- Developing research findings to inform standards development for certifiable autonomy
- Collaborating with ASTM Working Group on autonomy certification guidelines
- FAA Collaboration and Interest

Expandable Variable-Autonomy Architecture (EVAA)
- Stretching the paradigm of autonomy
 - Determinist Rulesets Bounding Autonomous Behavior
 - Risk-Based Decision Making
- A process enabling certification
 - Software Architecture/Framework
 - Test Approach
- Scalable autonomy
 - Pilot-in-the-Loop to “Fully Autonomous”

Low Altitude Small UAS Test Ranges (LASUTR)
- A tool for certification
- High-risk integrated research
Expandable Variable Autonomy Architecture (EVAA)

- A Software Framework
 - A Federated Architecture
 - Safety Systems
 - 1
 - 2
 - 3...
 - Flight Executive
 - Software Structure & Techniques

- Classical & Non-Classical Verification Methods

- Safety Evaluation of the Technology
 - Targeted at Flight Demonstrations
 - Social Interaction
Armstrong’s Traveler Effort

• **Goal:** Trustworthy Autonomy
 - BVLOS to and from uncontrolled areas
 - 400 feet to Surface
 - Any Number of Aircraft per Operator

• **NASA Funded Effort**
 - Leverages a 30 year development of autonomy from DoD & NASA
 - TRL 3 to 5
 - Local Armstrong Directed Objectives
 - Supporting formulation of TACP Autonomous Systems start in 2018

• **Primarily Software Approach and Process Development**
 - Platform ~Agnostic
 - Mission ~Agnostic
 - Sensor ~Agnostic

• **Flight Development and Evaluation in Support of ASTM Regulatory Development**
 - Target Demos to Make an Airworthiness Case to
 - Possible High-Visibility Demo in Spring of 2017
 - Second Demo possible in 2018
How is LASUTR different from FAA Test Sites?

Agile/Flexible
• No COA allows for rapid changes based on evolving requirements

Interoperability
• Ability to test multiple aircraft/concept in an integrated manner

High-Risk Testing for New Concepts
• BVLOS
• Autonomy
• Night operations
• Controlled “risk” including controlled “crashes” without FAA accident notification requirements
LASUTR and FAA Test Site Collaboration Flow

- High-risk research conducted at LASUTR
- This generates research findings to help formulate testing requirements
- Research findings are shared with community of interest (FAA, Test Sites, industry, academia)
- FAA generates testing requirements for Test Sites (and other entities)
NASA South – Range for High-Risk Research

- **Terrain**
 - Flat
 - Virtual Cliff
 - Virtual Hill
 - 4 mile loop
 - Much longer at other LASUTR sites

- **Obstacles**
 - Cell Tower
 - Shuttle Hangar
 - Light Poles
 - Power Lines
 - Virtual High-Tension Power Line
 - Virtual Power Lines
 - Virtual Antenna with Guy Lines
 - Trees
Command, Control & Monitoring Architecture

During Test & Evaluation

Infotainment System
A/C vector / Map & LRO

Monitoring Only

System Control

Traveler GCS

Test-C2 Test Only

Safety Pilot-C2 Emergencies Only

COTS-C2 COTS GCS

Test Director & Safety Officer

RC Controller

Safety Pilot

Cellular

Blue text & lines indicate the core autonomous system.
Orange text & lines indicate flight test only components.

POCs

UTM

LASUTR TSPi

Lighting & Sound
Phase 1
Integrated Testing

Traveler System

A/C & Flight Control System
- WP Navigation
- Roll & Vz Capture
- Autopilots
- Core Flight Controls
- GPS/INS

Test Resources
- LASUTR
- Traveler GCS
- COTS GCS
- RT Monitors
- Chase Vehicle
- RC Controller
- CIT

EVAA
- Mission Manager
- Flight Executive
- Coupler
- Decider
- Health Monitor

Map Manager
- Terrain Map
- Feature Map
- Risk Map

Trajectory Generator
- AC1
- AC2
- ACn

Population Avoidance
- GCAS
- GeoFence

Mission System
- Route Follower
- Route Planner
- Terrain Following
- Ops Manager
- Social Interface

Flight Test
- FLS
- Flight Executive

Legend
- RTA Functions
- Untrusted Controllers
- Baseline Aircraft
- Sensors
EVAA Phase 2 Aircraft

• VTOL & Forward Flight Capable
• Payload Capacity for Sensors & EVAA
 • EVAA Processors, Wiring & Interfaces
 • 1 - oDroid XU4 0.16 lbs.
 • 2 – Adrino Processors
 • Speaker
 • Lights 0.35 lbs.
 • Sensors
 • 4 - Stereo-Vision Camera Pairs and Processors
 • ADS-B 0.07 lbs.
 • UTM Wireless Interface
 • Flight Test TSPI, etc. 0.57 lbs.
• 50 to 75 MPH Flight Speed
• 50 to 75 Mile Range
• Easy Break-Down & Assembly for Transportation to and from Test Sites
EVAA RTA Framework

Phase 1

RTA Framework

542 IP

542 Evaluates & Models Sensors

RTA Input Manager

Mission System

OLIV

FLS

GeoFence

GCAS Monitor

542 IP

542 Implements, Evaluates & Models Autopilot Recoveries

Vehicle Management System

542 IP

542 Airworthiness Certification

542 Systems Certification

542 Evaluates & Models Sensors