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Distributed Spacecraft Missions

• Mission architecture deploying two or more satellites in 

support of a common goal, or goals 

• Emerging as essential tools for the future of earth science, 

given their multiplatform sensing capabilities, increased re-

visit frequency

– SmallSats in particular often lend themselves to DSM 

applications

• NASA’s LandSat program has offered tremendous scientific 

value given it’s contribution to a multi-decadal record
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Types of DSMs

• Constellations: Missions designed as DSMs from 

their inception (GPS, MMS, CYGNSS) 

• Formation Flying Missions: DSMs with specific 

spatial configuration requirements, such as relative 

distance or three dimensional arrangement (GRACE) 

• Fractionated Spacecraft Missions: Missions that 

distribute the functional capabilities of a traditional, 

monolithic spacecraft across multiple platforms 

(DARPA System F6)
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Types of DSMs (continued)

• Ad Hoc Constellations: Individual missions that are 

combined to support common goals 

– Purely Ad Hoc: Separate missions that combined either 

during development or after launch to create one mission 

(TOPEX/Poseidon, A-Train)

– Temporally Distributed Spacecraft Missions: A series of 

missions (that may or may not have overlapping operational 

lifetimes) designed to support a common, long duration 

mission objective or objectives (Jason-2/3, LandSat, A-Train) 
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Example: Afternoon Train

• The Afternoon Train (A-Train) represents both of these sub 

classifications

• The first four (Aqua, Aura, CloudSat, and CALIPSO) 

launched into highly similar orbits in the early 2000s

– The Earth science community leveraged these satellites 

as a distributed system

– These 4 spacecraft constitute a purely ad hoc 

constellation
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Example: Afternoon Train

• Follow on missions (PARASOL, GCOM-W1, OCO-2, and 

Glory) were designed to support the existing satellites 

– These represent temporally distributed spacecraft 

missions that were used to further the previous 

observation objectives
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DSM Cost Estimating

• Parametric cost estimating

– Relies on historical datasets and regression 

tactics to build Cost Estimating Relationships 

(CERs) predict cost according to key mission 

drivers 

– Wide range of existing tools for a range of 

satellite sizes, mission classifications, science 

objectives, and mission phases
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Work Breakdown Structure

Foreman, 2016

Page 10

• The Work Breakdown Structure (WBS) provides a 

hierarchical representation of project deliverables

• Work not included in the WBS is not accounted for 

within cost estimates 

Image Credit: NASA Work Breakdown Structure Handbook 



Existing DSM Costing Challenges

• The underlying assumptions regarding the design and 

manufacturing process are challenged by the emerging 

DSM paradigm 

• Three obstacles to high fidelity constellation cost models: 

1. All CERs are developed based on historical datasets, and 

an underlying assumption is that historical trends will hold 

a. The application of existing CERs to DSM architectures, 

which often leverage advanced or specialized 

technology, may be inappropriate. 
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Existing DSM Costing Challenges

2. Tendency in early optimization efforts to estimate the total 

mission cost for a DSM containing n identical spacecraft 

by calculating the cost for one spacecraft and multiplying it 

n times.

a. This method fails to account for benefits of developing 

multiple spacecraft simultaneously (e.g. economies of 

scale and learning curve advantages)

b. Also fails to address the additional cost-risk 

associated with late design changes or manufacturing 

errors. 
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Existing DSM Costing Challenges

3. The design process for DSMs may account for system 

scalability and flexibility in a way not addressed by 

monolithic design efforts.

a. This may result in different costs and value generated 

by the system must be taken into account through 

proper discounting and probabilistic cost estimating

b. Cost and value depends not only on the initial 

architecture, but also on later decisions to exercise 

(or not exercise) system options. 
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Previous Work

• Existing optimization efforts have leveraged existing CERs 

but generally have not tailored cost modules specifically for 

DSMs

– Multiply by n approach

• Nag et al. (2014) addressed the challenges of using 

traditional costing methods for DSM

– Low reliability of existing learning curve factors

– Lack of parametric tools for satellites with mass < 20kg

– Insufficient experience with small sat operations
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Motivation

• Reliable cost estimating is essential to the mission 

proposal process

• As DSMs offer new advantages to the realm of Earth 

science and observation, they also offer new 

challenges to cost estimators 

• New cost estimating practices are required to more 

accurately represent the new technological 

landscape
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Methodology

• To survey the existing cost estimating toolkit as it pertains to 

DSMs, we have developed an aggregate cost model for 

constellation cost estimating. 

– Leveraging widely accepted CERs

– Pre-Phase A comparative, not exact value, estimate

– Not addressing schedule or scope creep

• Assuming project is executed at the optimal pace

• In support of a NASA Goddard effort to develop a Tradespace

Analysis Tool for Constellations (TAT-C)
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Aggregate Model Diagram
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Results and Recommendations

• Building the aggregate cost model required examination of 

each step of the DSM development process

• We found four areas were existing cost estimating 

methodologies do not account for the innovative nature of 

DSM development: 

1. Design iteration

2. System Integration and Testing

3. Mission Operations

4. Technology Development
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Design Iteration

• DSM optimization often results in a set of possible solutions, so 

design iteration and rework are essential to the early development 

process

• Constellation rework may pertain to a single spacecraft, multiple 

instances of one component, or the entire system

• The NASA WBS Handbook specifically excludes “rework, retesting, 

and refurbishing” from the standard WBS

– Existing margins may not account for the change propagation 

associated with DSM systems

– Late stage design changes can have significant impact on 

cost growth
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Design Iteration Example: MMS

• The Magnetospheric Multiscale Mission (MMS) consisted of 

four identical spacecraft 

• Failed component within the Fast Plasma Instrument (FPI) 

was discovered during the integration phase, requiring 

significant rework

– Before the end of the integration and test phase, MMS 

had used almost all of its available budget

– The component failure also contributed to significant 

schedule delays
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Design Iteration: Recommendation

• We recommend that design iteration, which has the potential 

to result in design rework, retesting, and refurbishment, be 

specifically included within WBS Element 6 (Spacecraft) for 

constellation missions as an essential spacecraft deliverable 

required to achieve project objectives. 

• We intend to examine the applicability of existing design 

heritage factors to Earth science constellations and ad-hoc 

DSMs in a future work, as a method of accounting for the 

cost savings associated with using iterations of previous 

work. 
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Systems Integration and Testing

• For DSMs, system integration includes both the integration 

of each individual satellite and the fleet as a whole

– Previous CERs may not account appropriately for this 

two-tier integration and testing requirement

• Scientific program managers have begun implementing 

process assembly lines, in which spacecraft are built in 

parallel, with teams and services move from product to 

product
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Systems Integration and Testing

• Wider use of concurrent engineering practices 

suggests that costs for planning manufacturing, 

integration, and testing may be incurred as part of 

the design phase

• Design phase can also choose to accept lower fault 

tolerance for individual spacecraft if the constellation 

can tolerate the loss of one or more  spacecraft

• Introduces a tradeoff between spacecraft 

reliability and constellation redundancy
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Systems Integration and Testing: 

Recommendations

• We recommend manufacturing be considered as an element 

of systems integration and testing (WBS10) for constellation 

missions and encourage cost estimating model developers 

to develop CERs that address the unique nature of satellite 

constellation manufacturing and integration. 

• We further recommend that program managers and cost 

estimators consider the nuances of constellation fault 

tolerance and system testing when allocating project funding 

and considering the tradeoffs between individual satellite 

and DSM risk. 
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Mission Operations

• DSMs are relying on increased levels of automation for 

normal system operations

• Automated operations introduce new tradeoffs between cost 

and risk: 

– Reduce the need for some ground station equipment 

and personnel

• Increased need for off-nominal operating teams

– Increase development costs earlier in the project 

lifecycle and software specific risks
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Mission Operations Example: ST5

• Space Technology 5 mission, consisted of three 25 

kg satellites

• Despite initial challenges, ST5 was able to achieve 

its mission objectives, largely due to the Anomaly 

Team

• Toward the end of its 100 day mission, ST5 

completed a weeklong ‘lights out’ operating period
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Mission Operations: 

Recommendation

• We recommend that the current approach to DSM 

operations cost estimating be reconsidered, 

including the development of a new CER that 

addresses the degree of autonomy built into a given 

constellation operation plan.

• Given that approximately 10% of the NASA Earth 

science budget is spent maintaining and processing 

data from spacecraft that have exceeded their 

operational lifetimes, this should also be considered 

as part of the Phase E planning process. 
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A Note on Technology 

Development

• Raising TRL on small satellite missions, while 

simultaneously attempting aggressive science goals, 

can generate significant cost growth

– ST5 experienced 62.5% cost growth

– Cubesatellite missions have been difficult to cost, 

in part due to the cost associated with 

miniaturizing complex instruments

• We plan to examine this impact in a future work
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Illustrative Example

• Consider a costing reference mission:

– 12 identical spacecraft

– each with a dry mass of 100 kg

– Earth observation payload

• To demonstrate the impact of our first 

recommendation, we will cost the constellation first 

using the multiply-by-n approach
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Traditional costing of a single 

spacecraft

• We can cost one of the spacecraft using CERs available 

from the 1996 Small Satellite Cost Model:

Cspacecraft = 781 + 26.1 mdry1.261 

Cpayload = 0.4 Cspacecraft

Csatellite = Cspacecraft + Cpayload

• We assume the nonrecurring and recurring costs constitute 

60% and 40% of the the satellite total respectively
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Traditional Costing Results
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• To calculate the cost of the constellation, we multiply Csatellite by 12

Single Satellite
Single Satellite 

Nonrecurring

Single Satellite 

Recurring
Constellation

Constellation 

Nonrecurring

Constellation 

Recurring

Spacecraft 

Bus Cost 

(FY00$)

$9,463,414.34 $5,678,048.60 $3,785,365.74 $51,102,437.44 $5,678,048.60 $45,424,388.84 

Payload Cost 

(FY00$)
$3,785,365.74 $2,271,219.44 $1,514,146.29 $20,440,974.98 $2,271,219.44 $18,169,755.53 

Total Cost 

(FY00$)
$13,248,780.08 $7,949,268.05 $5,299,512.03 $71,543,412.42 $7,949,268.05 $63,594,144.37



Implementing the first 

recommendation set 

• To account for design iteration and the cost of designing 

the DSM as a system, we leverage a heritage factor of 

0.2 to scale the development costs for copy satellites

– The first satellite will incur normal recurring costs, 

and each of the following n-1 satellites will 20% of 

the nonrecurring costs

• This will account for some systems level costs and 

design iteration considerations that pertain to the 

constellation system 
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Implementing the first 

recommendation set (cont.) 

• We then apply the learning curve factor proposed by Nag et 

al. for small satellites to scale the recurring costs. 

• The recurring costs, using a learning curve, are calculated:

RCconstellation =  RCindividual nlog
2
b

where RCconstellation is the constellation recurring cost

RCindividual is recurring cost of a single (original) satellite

b is the learning curve factor for small satellites, 0.67
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Refined Costing Results
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Single Satellite
Single Satellite 

Nonrecurring

Single Satellite 

Recurring
Constellation

Constellation 

Nonrecurring

Constellation 

Recurring

Spacecraft Bus 

Cost (FY00$)
$9,463,414.34 $5,678,048.60 $3,785,365.74 $28,978,463.49 $18,169,755.53 $10,808,707.95 

Payload Cost 

(FY00$)
$3,785,365.74 $2,271,219.44 $1,514,146.29 $11,591,385.40 $7,267,902.21 $4,323,483.18 

Total Revised 

Cost (FY00$)
$13,248,780.08 $7,949,268.05 $5,299,512.03 $40,569,848.88 $25,437,657.75 $15,132,191.13 

Total 

Difference 

(FY00$) 

$0.00 $0.00 $0.00 $30,973,563.53 ($17,488,389.70) $48,461,953.24 



Illustrative Example Conclusions

• Demonstration of high-level trends in cost due to 

learning curve effect and design iteration:

– Design iteration results in an increase in 

nonrecurring costs 

– Learning curve effects reduce recurring costs

• By further refining the estimate, and accounting for 

other DSM specific cost trends earlier, program 

managers could produce more reliable, tailored cost 

estimates
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Conclusion

• We have developed an aggregate cost model for 

constellations and identified four shortcomings of the 

existing cost estimating toolkit, as it pertains to DSMs:

1. Design iteration

2. System Integration and Testing

3. Mission Operations

4. Technology Development

• We have offered preliminary recommendations to address 

these shortcomings and demonstrated their impact through 

an illustrative example. 
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QUESTIONS? 
Thank you for your attention
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